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Abstract- Modern Verification Environments rely heavily on SystemVerilog (SV) constraint solver to generate legal 

stimulus [1]. Verification engineers write constraints based on design specifications to carve out a feasible region for 
stimulus that a Design Under Test (DUT) can support. The quality of such constraints often decides the quality of testing 
that is being done. The definition of legality of stimulus changes during the course of a project as new features get added to 
the design. It also changes across projects when certain old features are selectively enabled or disabled for a particular chip. 
Constraints typically get added on top of one another over projects and there is a significant burden of legacy code. In unit 
and integration level TestBenches (TBs), typically the number of such constraints could be anywhere from 1K-20K (or 
sometimes even larger). Constraints are also added temporarily to prevent tests from hitting known checker issues or known 
design bugs. These constraints are meant to be removed once the checker issue or RTL bug is fixed. What if these constraints 
were accidentally not removed?  What happens if constraints were added with an incorrect understanding of the 
specifications? It is also possible that constraints were coded up with a correct understanding of the specification, but later 
the specification changed, and the constraints were not updated. Under these situations, a TB can contain over-constraints. 
Unlike under-constraints, over-constraints do not cause test failures and can silently degrade coverage and possibly impact 
simulation performance. The question then arises: How do we know if there are constraints which are over-constraining 
the Feasible Space and degrading quality of the stimulus? How do we identify redundant constraints which do not affect 
the stimulus, but cause performance degradation? In this paper, we propose Systematic Constraint Relaxation (SCR) – a 
technique that can automatically identify such over-constraints with minimal engineering effort. Some of these over-
constraints can even escape functional coverage analysis. 

 
I.   INTRODUCTION 

Identifying over-constraints can improve testing and find potential bugs in the design. An automated solution to this 
problem can help various verification owners identify over-constraints without incurring a lot of human effort and 
intervention. Previous DVCON papers have highlighted several best practices for avoiding common mistakes in 
writing constraints [2][3]. However, to the best of our knowledge there has been no prior published work on 
automatically identifying over-constraints. So far, the standard approach in industry is to look at the coverage report 
and identify missing bins. When a bin for a cross-coverage is not hit in large number of random simulations, the first 
step is to check whether the coverage owners have identified accurately which bins are legal and which are illegal and 
marked them appropriately. In many cases, marking a bin illegal is done by the same DV engineer who coded up the 
constraints. If there is a common mode misunderstanding of the specification, the DV engineer might incorrectly mark 
the bin as illegal. In cases like this, an over-constraint might not be identified by coverage analysis. However, this 
does not happen all the time. Moreover, when a bin for a specific cross is not being covered, it does not immediately 
narrow the problem down to a constraint issue. Not being able to hit cross-coverage could be very well due to other 
testbench code unrelated to constraints. While coverage analysis is useful, it would be good to have a low-cost 
alternative to address this problem.   

 
II.   TECHNICAL SOLUTION 

To analyze this problem, let us suppose that the TB implementation has a Feasible Solution Space (F) constrained 
by a set of constraints C1, C2, … CN. For visualization purposes, and without loss of generality, we assume 2 linear 
constraints 𝐿1 ≤ 0, 𝐿2 ≤ 0 constraining the feasible region to F in TB (Fig. 1a) Let us suppose that one of the constraints 
𝐿1 ≤ 0 is over-constraining the stimulus. Let us also suppose that 𝐿1’ ≤ 0 is the correct constraint and the correct feasible 
region is 𝐹 𝑈 𝑅, where U denotes Union. Let P denote the output of the randomizer obtained by relaxing the constraint 
𝐿1 ≤ 0. P can fall in any of the three regions - F, R, X (Fig.1b). We can determine whether 𝑃 ∈ 𝐹 or 𝑃 ∉ 𝐹. This can 
be done by checking if P satisfies the original set of constraints or not. Now, if 𝑃 ∉ 𝐹, how do we determine if 𝑃 ∈ 𝑅 
𝑜𝑟 𝑃 ∈ 𝑋? There is no definitive answer to this, since the region R is not well-defined, and we do not know if it even 
exists or not. However, we can use a heuristic to infer whether 𝑃 ∈ 𝑅 𝑜𝑟 𝑃 ∈ 𝑋.  To that end, let us note, if 𝑃 ∉ 𝐹 the 
TB expects the test to FAIL. Let S denote the status of a test by running a 𝑃 ∉ 𝐹. There could be 2 outcomes:  



            
 
 
Figure 1. a) Feasible Region (F), Over-Constrained Region (R) and Infeasible Region (X) b) Solution Outcomes by 

Relaxing L1 (Note: Actual column outcomes are not exhaustive) 
 

 
1) 𝑃 ∉ 𝐹 and S==FAIL: In this case we cannot conclusively say if 𝑃 ∈ 𝑋 or 𝑃 ∈ 𝑅.  This is because a failure can occur 
when P belongs to either region. For example, a) If 𝑃 ∈ 𝑋, i.e., output of the randomizer falls in the region not 
supported by the design, we can expect the test to fail b) If 𝑃 ∈ 𝑅, i.e., output of the randomizer falls in a region 
which is over-constrained by TB but supported by RTL. In that case also the test could fail – in the event there 
is an RTL bug in the over-constrained region or  TB checker is unable to handle stimulus in this region.  2) 𝑃 ∉ 𝐹 and 
S==PASS: This could happen only if L1 is over-constrained, and we can hypothesize 𝑃 ∈ 𝑅. Summary of the method: 
Relax Li and generate P subject to all other constraints: If 𝑃 ∉ 𝐹 and S==PASS => 𝑃 ∈ R => Li is over-
constrained  
 

The basic idea of SCR is to automate the above process. A script searches for all files containing constraints in a 
TB. It then modifies each of those files by splitting up individual constraints into separate constraint blocks (Fig. 3), 
so that a single constraint Ci can be relaxed during a test run (by setting Ci.constraint_mode(0)). For every 
randomization of the object that contains Ci, we need to re-randomize the object with all variables of the object set to 
rand_mode(0) and Ci enabled. If the re-randomization fails, we conclude 𝑃 ∉ 𝐹, else we conclude 𝑃 ∈ 𝐹 . The trick 
here is to have the script insert custom code into pre_randomize and post_randomize sections in a way that the original 
code inside pre_randomize gets executed prior to the first randomization and the original code inside post_randomize 
gets executed after the second randomization, effectively rendering the second randomization process transparent to 
the TB code. If the second randomization finds 𝑃 ∉ 𝐹 we stop the process of constraint relaxation, so that there is 
at most one 𝑃 ∉ 𝐹 in a test. If the test is able to generate a single 𝑃 ∉ 𝐹 and the test eventually passes, then the 
script flags Ci as over-constrained. Finally, a post-processing script extracts the flagged constraints for review by the 
verification owner. The entire algorithm/process is explained in the Fig. 2 below. There are some subtleties w.r.t 
disabling constraints in presence of inheritance hierarchies and regarding save-restore rand_mode of variables before 
and after second randomization.  
 

III.  COMMON QUESTIONS 
SCR is inconclusive when 𝑃 ∉ 𝐹 and we have a test failure. As mentioned earlier, this can happen when a test 

generating 𝑃 ∉ 𝐹 hits RTL bug in the over-constrained region R. Does that mean that SCR cannot really find over-
constraints which were hiding RTL bugs? Typically, RTL bugs are sparse. Which means it can lie in the over-
constrained region R, but the chances that all points in R will have RTL bug is very low. So, if we hit a 𝑃 ∈ 𝑅 for 
which the test passes, the SCR flow would identify the over-constraint. Once the over-constraint is fixed, the 
RTL bug should be hit because now the feasible region would include the region R which had the RTL bug.  

  
Why does the SCR flow generate a single 𝑃 ∉ 𝐹 and then stop constraint relaxation? A SCR test is only 

conclusive if the test passes. If we generate too many points outside the feasible region, likelihood of the point 
landing in illegal region X increases, thereby increasing the chances of test failure, which would render the test 
inconclusive.  

 
 



           

 
Figure 2. Flow chart explaining SCR Algorithm 

 
 
 

Instead of relaxing the constraint and checking whether 𝑃 ∈ 𝐹 or 𝑃 ∉ 𝐹, why does the SCR flow not invert the 
constraint to generate 𝑃 ∉ 𝐹? Theoretically, both solutions should work. In fact, inverting the constraint is  
guaranteed to generate 𝑃 ∉ 𝐹 – which is what we want. However, implementing the inversion procedure in the 
script becomes hard because it needs to account for all SV constraint syntax. To illustrate this better, refer to 
constraint block var_randomization_3 in Fig. 3.  The SCR script cannot statically unroll the foreach and split 
constraints inside foreach into separate constraint blocks because SV queue size is not known until runtime. 
So, if we follow the inversion methodology, the inverted code would look like “foreach (payload[i]) 
{((inc_payload==1) && (i!=0)) ->payload[i]<=payload[i-1]}”. This means that all elements in payload[] need 
to violate the greater than constraint for the original constraint to be violated. We would not test the case  to 
see if we have a passing test case when a single element in payload[] violate the constraint. Thus, although 
theoretically more appealing, the inversion procedure causes some loss of granularity in which we could cause 
constraints to be relaxed. 



  
 

 
Figure 3. Sample Output showing original constraints commented out and split constraints added by SCR Script 

 
 
 

 
Figure 4. A practical example of over-constraint not leading to coverage loss 

 
 

IV. RESULTS 
We ran SCR to search for over-constrained stimulus in an integration level TB. The SCR script modified the classes 

containing constraints by adding custom code, split the constraints into separate blocks, and launched regression. The 
script was written in Python, and it took about 2 weeks of engineering effort to build it. From the data collected from 
300 SCR tests, 22 cases of over constraints were identified. Running 300 tests took very minimal farm resource and 
was completed in an overnight run. These 22 cases were analyzed by verification engineers. For most cases this 
analysis was done by reviewing the code and specifications. For a few cases, it required re-producing the test-cases to 

Modified split 
constraints inserted 
by SCR script 

Original constraints 
commented by SCR 
script 



analyze which stimulus outside the feasible region caused the test to pass. Out of the 22 cases identified by SCR, 19 
cases of over-constraints were not causing coverage loss.  

 
Fig. 4 provides a practical example of an over-constraint identified by SCR which does not lead to coverage loss. 

Let us suppose, a hypothetical Design Under Test (DUT) with an interface that supports 2 packet types (or IDs) - ID1 
and ID2. Let’s also assume that a fixed number of most significant bits on the interface encodes the packet types in 
the ID field, and the encoding of the remaining fields on the interface depends on the ID field. This is shown in Fig. 
4. Some fields like F1, F5 are shared across IDs while other fields like F2, F3, F6 etc. are unique to an ID. Let’s 
suppose, the specification mandates that for packets of ID==ID1, the field F3 should be constrained within one of the 
fixed values {x, y , z}. Now, if a verification engineer chooses to code up this constraint as c1 (shown in Fig. 4), then, 
SCR would detect c1 as an over-constraint. This will happen because SCR will relax the constraint c1 and will find a 
ID2 packet with F3 not in {x, y, z}. Since that will be a legal packet as per specification, the test will pass, and the 
SCR script will confirm a P outside TB defined feasible region which caused the test to pass. If the DV engineer coded 
the same constraint as c1_fixed (in Fig. 4), then SCR would not identify this as an over-constraint. As is clear from 
this example, SCR can also identify over-constraints that do not lead to coverage loss. Please note, if F3 was a shared 
field in ID1 and ID2, and F3 value was don’t care for ID2 (as per spec), then the constraint c1  would be an over-
constraint leading to coverage loss. Most of the 19/22 cases of over-constraints not leading to coverage loss fell into 
this category. Once these were fixed, they were no longer picked by SCR.  

 
We found 3/22 cases which were over-constraints that resulted in reduced coverage. We cannot share the details of 

the over-constraints without discussing micro-architectural details. However, we will broadly explain the nature of 
these over-constraints. One of the over-constraints which led to coverage loss was a known checker-issue and was 
tracked separately. The existence of two of the other over-constraints that led to coverage loss were not known to the 
DV engineers. They involved complex crosses of multiple variables and configuration scenarios. One of them was 
due to incorrect understanding of the specification and the other one was because of coding error in handling 
complicated crosses.  

 
IV. CONCLUSION 

In conclusion, SCR provides a novel methodology for solving a tough problem that silently plagues many 
testbenches. However, SCR is a heuristic and not a formal method. It does not guarantee that all over-constraints will 
be found. This is because even if an over-constraint region R exists, we might not be able to hit it by running a limited 
number of tests. Nevertheless, we feel that it is very powerful technique and the verification community in general 
can greatly benefit from adopting this technique to weed out over-constraints from their TBs. 
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