SystemC-to-Verilog Compiler:
a productivity-focused tool for hardware
design in cycle-accurate SystemC

Mikhail Moiseev, Intel Corporation
Roman Popov, Intel Corporation
llya Klotchkov, Intel Corporation

DESIGN AND VERIFICATION'™

accellera DV

Introduction

e SystemC-to-Verilog Compiler (SVC) translates cycle-accurate SystemC to
synthesizable Verilog code

e SVCis focused on improving productivity of design and verification
engineers

— Not a HLS tool

e SVC has multiple advantages which distinguish it from other tools
— C++11/14/17 support
— Arbitrary C++ at elaboration phase (in module constructors)
— Fast and simple code translation procedure
— Human-readable generated Verilog code

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

C++ and SystemC support

* SVC uses SystemC 2.3.3
— SystemC Synthesizable Standard fully supported

e SVC supports modern C++ standards
— C++11, C++14, C++17
— Partial support of STL containers
* No limitations on elaboration stage programming, arbitrary C++
supported
— Enables to design highly reusable IPs
— Load input data from file/database

DESIGN AND VERIFICATION'™

accellera - DVCON
© Accellera Systems Initiative 3

SYSTEMS INITIATIVE

Fast and simple code translation

* SVC does minimal optimizations, leaving others to logic synthesis tool
— Constant propagation and dead code elimination
— Used optimizations intended to generate better looking code

e SVC works very fast
— Elaboration takes several seconds
— Code translation a few tens of seconds
e SVC uses conventional build system (CMake)

— No build script or configuration files required
— No code polluting with pragmas

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 4

SYSTEMS INITIATIVE

Human-readable generated Verilog

e SVC generates Verilog RTL which looks like SystemC source
— Verilog variables have the same names everywhere it is possible
— General structure of process/always block control flow is preserved

* Productivity advantages of human readable code
— DRC and CDC bugs in generated Verilog can be quickly identified in input SystemC

— Violated timing paths from Design Compiler can be easily mapped to input
SystemC

— ECO fixes have little impact on generated Verilog

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 5

SYSTEMS INITIATIVE

Tool architecture

SystemC Dynamic Design Consta r.1t Thread state
design > objects ¥ propagation —>
elaborator _ | generator
] analysis ¢
Annotated Process code
l objects and variables
Module
. UseDef Process code
hierarchy 3 , 5
analysis generator
generator
\ 4
Modules and Desi
instances esign Error report
—>
Clang/LLVM [

2019

DESIGN AND VERIFICATION'™

accellera - DVCON
© Accellera Systems Initiative 6

SYSTEMS INITIATIVE

Design Elaboration

 SVCimplemented as library on top of SystemC and Clang libraries
— Substitutes SystemC library for linking
— Runs Verilog code generation after SystemC elaboration phase

e SVC extracts design structure directly from process memory

— Module hierarchy, links from pointers to pointee objects, values of scalar types,
sensitivity and reset lists for processes

e SVC gets information about types form Clang AST

e Distinguish between pointer to dynamically allocated object and
dangling pointer problem

— Overriding new and new(] for sc_object inheritors, and sc_new for other types

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 7

SYSTEMS INITIATIVE

Static Analysis and Code Generation

* Constant propagation analysis

— Helps to determine number of loop iterations, eliminate dead code, substitute constant
into generated code

Used/defined variable analysis
— Allows to split SystemC variables into local variables and registers

* Design correctness checking

— Non-channel object read before initialization, Array out-of-bound access and
dangling/null pointer dereference, Incomplete sensitivity lists for combinational
methods, Inter-process communication through non-channel objects, ...

Clocked thread state generation
Clocked thread code generation

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 8

SYSTEMS INITIATIVE

SC_METHOD example

sc_in<bool> in;
sc_out<bool> out;
sc_signal<bool> S;

SC_CTOR (MyModule) {
SC_METHOD (method proc) ;
sensitive << 1in << s;

void method proc () {
bool a = in;
if (s !'= 0) {
out = ay;
} else {

out 0;

SYSTEMS INITIATIVE

© Accellera Systems Initiative

logic in, out;

logic s;

always comb
begin // method simple.cpp:112:5

end

logic ay;
a = in;
if (s !'= 0)
begin
out <= a;
end else begin
out <= 0;
end

2019

DESIGN AND VERIFICATION'™

DV OIN

CONFERENCE AND EXHIBITION

Clocked thread state generation

e SVC converts a thread into pair of always comb and always_ff blocks
— always_ff block implements reset and update logic for state registers
— always _comb block contains combinational logic that computes the next state
* Clocked thread can have multiple states specified with wait()
— Number of states is the number of wait() calls
— Thread states are represented by automatically generated PROC_STATE variable
— Main case of PROC_STATE in represents the SystemC thread FSM
 Thread variables divided into two groups

— Local variables that are always assigned before use
— Register variables that can retain their value from previous clock cycle

DESIGN AND VERIFICATION'™

accellera . DVCON
© Accellera Systems Initiative 10

SYSTEMS INITIATIVE

SC CTHREAD example #1

sc_in<unsigned> a;

sc_out<unsigned> b;

SC_CTOR (MyModule) {
SC_CTHREAD (threadl, clk.pos());
async_reset signal is(rst, false);

void threadl () {
unsigned i = 0;
b = 0;
while (true) {
wait();
b = 1i;

i =1 4+ a;

SYSTEMS INITIATIVE

© Accellera Systems Initiative

11

logic [31:0] a;

logic [31:0] b, b next;

logic [31:0] i, 1 next;

always_comb begin
threadl func;

// cthread simple.cpp:101:5

end

function void threadl func;

b next = b; 1 next = 1i;

b next = 1 next;

i next = 1 next + a;
endfunction

always ff @ (posedge clk or negedge rst)
begin : threadl ff
if (~rst) begin
i <=0; b <= 0;
end else begin
1 <= 1 next; b <= b next;

end

end 2019

DESIGN AND VERIFICATION'™

DV OIN

CONFERENCE AND EXHIBITION

sc_
sc_

SC CTHREAD example #2

in<sc ulnt<8>> a;
out<sc uint<8>> b;

SC_CTOR (MyModule) {

voi

}

SYSTEMS INITIATIVE

SC_CTHREAD (thread2, clk.pos());
async_reset signal is(rst, false);

d thread2 () {
sc_ulnt<8> 1 = 0;

b = 0;
wait(); // STATE O
while (true) {
auto j = a.read();
i=3+ 1;
wait () ; // STATE 1
b = 1i;

© Accellera Systems Initiative

logic PROC_STATE, PROC STATE next;

always comb begin // cthread simple.cpp:114:5
threadZ2 func;

end

function void thread2 func;

integer unsigned 7j;

b next = b; 1 next = 1;
case (PROC STATE)
0: begin

J = a; 1 next = 3J + 1;
PROC STATE next

1; return;
end
1: begin

b next = 1 next;

J = a; 1 next = 3J + 1;

PROC STATE next = 1; return;

end
endcase DESIGN AND VER%:QJ\'IZN”‘
endfunction DVB D N

CONFERENCE AND EXHIBITION

12

Clocked thread code generation

* The flow control statements if, switch and loops without wait() calls are
converted into equivalent Verilog statements

* Loops with wait() calls are divided into several states

— Loop statement in that case is replaced by if statement

* If loop with wait() contains break and continue statements they are
replaced with the code up to the next wait() call

accellera . DVCON
© Accellera Systems Initiative 13

IIIIIIIIIIIIIIIII

SC_CTHREAD with break example

void thread break() { function void thread break func;
wait(); // STATE O case (PROC STATE)
while (true) {
wait () ; // STATE 1 1: begin
while (!enabled) { if (!enabled) begin
if (stop) break; if (stop) begin
wait () ; // STATE 2 // break begin
} ready next = 0;
ready = false; PROC STATE next = 1; return;
} // break end
} end
PROC STATE next = 2; return;
end
ready next = 0;

PROC STATE next = 1; return;

end
2
endcase

2019

endfunction DESIGN AND VERIFICATION"™

accellera - DVCON
© Accellera Systems Initiative 14

SYSTEMS INITIATIVE

Synthesis time for memory designs

Number of modules i 920 6 Generated

. rocesses
(instances) p code, LoC
(instances)

Compilation time

Designh name

58 (308) 161 (711) 29181 6 sec
19 (252) 65 (811) 20724 81 sec
78 (581) 291 (1470) 53404 18 sec
15 (57) 41 (146) 4662 2 sec
167 (880) 765 (2713) 87622 21 sec
53 (161) 173 (523) 25715 7 sec
57 (157) 170 (400) 21061 5 sec

2019

DESIGN AND VERIFICATION'™

accellera - DV
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Area and performance results

Alternative implementation*

Desigh name
Area Freq Area Freq
Reg / LUT MHz Reg / LUT MHz
- 24K/ 10.2K 63 2.5€ / 103K 62
- 54K / 145K 52 59K / 151K 53
- 547 / 1812 174 484 [/ 1823 172

*Alternative implementation — Verilog code for these designs created in another way

2019

DESIGN AND VERIFICATION'™

DV OIN
accellera © Acce”era Systems |n|t|at|ve 16 CONFERENCE AND EXHIBITION

SYSTEMS INITIATIVE

Future plans

 Temporal assertions in SystemC with automatic translation into SVA
* Cope problem with pointers (to avoid of new/new/] patch and sc_new)

— Extend dynamic elaboration with static one
— Preprocess files to replace new with sc_new

DESIGN AND VERIFICATION'™

accellera - DVCON
© Accellera Systems Initiative 17

SYSTEMS INITIATIVE

Questions

S'(STE INTIATIVE m

	SystemC-to-Verilog Compiler: a productivity-focused tool for hardware design in cycle-accurate SystemC
	Introduction
	C++ and SystemC support
	Fast and simple code translation
	Human-readable generated Verilog
	Tool architecture
	Design Elaboration
	Static Analysis and Code Generation
	SC_METHOD example
	Clocked thread state generation
	SC_CTHREAD example #1
	SC_CTHREAD example #2
	Clocked thread code generation
	SC_CTHREAD with break example
	Synthesis time for memory designs
	Area and performance results
	Future plans
	Questions

