
SystemC-to-Verilog Compiler:
a productivity-focused tool for hardware

design in cycle-accurate SystemC

Mikhail Moiseev, Intel Corporation
Roman Popov, Intel Corporation
Ilya Klotchkov, Intel Corporation

© Accellera Systems Initiative 1

Introduction
• SystemC-to-Verilog Compiler (SVC) translates cycle-accurate SystemC to

synthesizable Verilog code
• SVC is focused on improving productivity of design and verification

engineers
– Not a HLS tool

• SVC has multiple advantages which distinguish it from other tools
– C++11/14/17 support
– Arbitrary C++ at elaboration phase (in module constructors)
– Fast and simple code translation procedure
– Human-readable generated Verilog code

© Accellera Systems Initiative 2

C++ and SystemC support
• SVC uses SystemC 2.3.3

– SystemC Synthesizable Standard fully supported

• SVC supports modern C++ standards
– C++11, C++14, C++17
– Partial support of STL containers

• No limitations on elaboration stage programming, arbitrary C++
supported
– Enables to design highly reusable IPs
– Load input data from file/database

© Accellera Systems Initiative 3

Fast and simple code translation
• SVC does minimal optimizations, leaving others to logic synthesis tool

– Constant propagation and dead code elimination
– Used optimizations intended to generate better looking code

• SVC works very fast
– Elaboration takes several seconds
– Code translation a few tens of seconds

• SVC uses conventional build system (CMake)
– No build script or configuration files required
– No code polluting with pragmas

© Accellera Systems Initiative 4

Human-readable generated Verilog
• SVC generates Verilog RTL which looks like SystemC source

– Verilog variables have the same names everywhere it is possible
– General structure of process/always block control flow is preserved

• Productivity advantages of human readable code
– DRC and CDC bugs in generated Verilog can be quickly identified in input SystemC
– Violated timing paths from Design Compiler can be easily mapped to input

SystemC
– ECO fixes have little impact on generated Verilog

© Accellera Systems Initiative 5

Tool architecture

© Accellera Systems Initiative 6

Dynamic
elaborator

Module
hierarchy
generator

Constant
propagation

analysis

UseDef
analysis

Design
checker

Process code
generator

Thread state
generator

SystemC
design

Design
objects

Annotated
objects

Modules and
instances

Process code
and variables

Error report
Clang/LLVM

Design Elaboration
• SVC implemented as library on top of SystemC and Clang libraries

– Substitutes SystemC library for linking
– Runs Verilog code generation after SystemC elaboration phase

• SVC extracts design structure directly from process memory
– Module hierarchy, links from pointers to pointee objects, values of scalar types,

sensitivity and reset lists for processes
• SVC gets information about types form Clang AST
• Distinguish between pointer to dynamically allocated object and

dangling pointer problem
– Overriding new and new[] for sc_object inheritors, and sc_new for other types

© Accellera Systems Initiative 7

Static Analysis and Code Generation
• Constant propagation analysis

– Helps to determine number of loop iterations, eliminate dead code, substitute constant
into generated code

• Used/defined variable analysis
– Allows to split SystemC variables into local variables and registers

• Design correctness checking
– Non-channel object read before initialization, Array out-of-bound access and

dangling/null pointer dereference, Incomplete sensitivity lists for combinational
methods, Inter-process communication through non-channel objects, …

• Clocked thread state generation
• Clocked thread code generation

© Accellera Systems Initiative 8

SC_METHOD example

© Accellera Systems Initiative 9

sc_in<bool> in;
sc_out<bool> out;
sc_signal<bool> s;

SC_CTOR(MyModule) {
SC_METHOD(method_proc);
sensitive << in << s;

}

void method_proc () {
bool a = in;
if (s != 0) {

out = a;
} else {

out = 0;
}

}

logic in, out;
logic s;

always_comb
begin // method_simple.cpp:112:5

logic a;
a = in;
if (s != 0)
begin

out <= a;
end else begin

out <= 0;
end

end

Clocked thread state generation
• SVC converts a thread into pair of always_comb and always_ff blocks

– always_ff block implements reset and update logic for state registers
– always_comb block contains combinational logic that computes the next state

• Clocked thread can have multiple states specified with wait()
– Number of states is the number of wait() calls
– Thread states are represented by automatically generated PROC_STATE variable
– Main case of PROC_STATE in represents the SystemC thread FSM

• Thread variables divided into two groups
– Local variables that are always assigned before use
– Register variables that can retain their value from previous clock cycle

© Accellera Systems Initiative 10

SC_CTHREAD example #1

© Accellera Systems Initiative 11

sc_in<unsigned> a;
sc_out<unsigned> b;

SC_CTOR(MyModule) {
SC_CTHREAD(thread1, clk.pos());
async_reset_signal_is(rst, false);

}

void thread1 () {
unsigned i = 0;
b = 0;
while (true) {

wait();
b = i;
i = i + a;

}
}

logic [31:0] a;
logic [31:0] b, b_next;
logic [31:0] i, i_next;
always_comb begin // cthread_simple.cpp:101:5

thread1_func;
end
function void thread1_func;

b_next = b; i_next = i;
b_next = i_next;
i_next = i_next + a;

endfunction
always_ff @(posedge clk or negedge rst)
begin : thread1_ff

if (~rst) begin
i <= 0; b <= 0;

end else begin
i <= i_next; b <= b_next;

end
end

SC_CTHREAD example #2

© Accellera Systems Initiative 12

sc_in<sc_uint<8>> a;
sc_out<sc_uint<8>> b;

SC_CTOR(MyModule) {
SC_CTHREAD(thread2, clk.pos());
async_reset_signal_is(rst, false);

}

void thread2() {
sc_uint<8> i = 0;
b = 0;
wait(); // STATE 0
while (true) {

auto j = a.read();
i = j + 1;
wait(); // STATE 1
b = i;

}
}

logic PROC_STATE, PROC_STATE_next;

always_comb begin // cthread_simple.cpp:114:5
thread2_func;

end
function void thread2_func;

integer unsigned j;

b_next = b; i_next = i;

case (PROC_STATE)

0: begin
j = a; i_next = j + 1;

PROC_STATE_next = 1; return;

end
1: begin

b_next = i_next;

j = a; i_next = j + 1;

PROC_STATE_next = 1; return;

end
endcase

endfunction

Clocked thread code generation
• The flow control statements if, switch and loops without wait() calls are

converted into equivalent Verilog statements
• Loops with wait() calls are divided into several states

– Loop statement in that case is replaced by if statement

• If loop with wait() contains break and continue statements they are
replaced with the code up to the next wait() call

© Accellera Systems Initiative 13

SC_CTHREAD with break example

© Accellera Systems Initiative 14

void thread_break() {
wait(); // STATE 0
while (true) {

wait(); // STATE 1
while (!enabled) {

if (stop) break;
wait(); // STATE 2

}
ready = false;

}
}

function void thread_break_func;

case (PROC_STATE)

0: ...
1: begin

if (!enabled) begin
if (stop) begin

// break begin

ready_next = 0;

PROC_STATE_next = 1; return;

// break end

end
PROC_STATE_next = 2; return;

end
ready_next = 0;

PROC_STATE_next = 1; return;

end
2: ...

endcase
endfunction

Synthesis time for memory designs

© Accellera Systems Initiative 15

Design name Number of modules
(instances)

Number of
processes
(instances)

Generated
code, LoC

Compilation time

A 58 (308) 161 (711) 29181 6 sec

B 19 (252) 65 (811) 20724 81 sec

C 78 (581) 291 (1470) 53404 18 sec

D 15 (57) 41 (146) 4662 2 sec

E 167 (880) 765 (2713) 87622 21 sec

F 53 (161) 173 (523) 25715 7 sec

G 57 (157) 170 (400) 21061 5 sec

Area and performance results

*Alternative implementation – Verilog code for these designs created in another way

© Accellera Systems Initiative 16

Design name

SVC Alternative implementation*

Area
Reg / LUT

Freq
MHz

Area
Reg / LUT

Freq
MHz

A 2.4K / 10.2K 63 2.5K / 10.3K 62

B 54K / 145K 52 59K / 151K 53

C 15.7K / 46K 35 14.3K / 48K 25

D 547 / 1812 174 484 / 1823 172

Future plans
• Temporal assertions in SystemC with automatic translation into SVA
• Cope problem with pointers (to avoid of new/new[] patch and sc_new)

– Extend dynamic elaboration with static one
– Preprocess files to replace new with sc_new

© Accellera Systems Initiative 17

Questions

© Accellera Systems Initiative 18

	SystemC-to-Verilog Compiler: a productivity-focused tool for hardware design in cycle-accurate SystemC
	Introduction
	C++ and SystemC support
	Fast and simple code translation
	Human-readable generated Verilog
	Tool architecture
	Design Elaboration
	Static Analysis and Code Generation
	SC_METHOD example
	Clocked thread state generation
	SC_CTHREAD example #1
	SC_CTHREAD example #2
	Clocked thread code generation
	SC_CTHREAD with break example
	Synthesis time for memory designs
	Area and performance results
	Future plans
	Questions

