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Introduction
• SystemC-to-Verilog Compiler (SVC) translates cycle-accurate SystemC to 

synthesizable Verilog code
• SVC is focused on improving productivity of design and verification 

engineers
– Not a HLS tool

• SVC has multiple advantages which distinguish it from other tools
– C++11/14/17 support
– Arbitrary C++ at elaboration phase (in module constructors)
– Fast and simple code translation procedure
– Human-readable generated Verilog code
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C++ and SystemC support
• SVC uses SystemC 2.3.3

– SystemC Synthesizable Standard fully supported  

• SVC supports modern C++ standards
– C++11, C++14, C++17 
– Partial support of STL containers

• No limitations on elaboration stage programming, arbitrary C++ 
supported
– Enables to design highly reusable IPs 
– Load input data from file/database
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Fast and simple code translation
• SVC does minimal optimizations, leaving others to logic synthesis tool

– Constant propagation and dead code elimination 
– Used optimizations intended to generate better looking code 

• SVC works very fast 
– Elaboration takes several seconds
– Code translation a few tens of seconds

• SVC uses conventional build system (CMake)
– No build script or configuration files required
– No code polluting with pragmas
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Human-readable generated Verilog
• SVC generates Verilog RTL which looks like SystemC source

– Verilog variables have the same names everywhere it is possible
– General structure of process/always block control flow is preserved

• Productivity advantages of human readable code
– DRC and CDC bugs in generated Verilog can be quickly identified in input SystemC
– Violated timing paths from Design Compiler can be easily mapped to input 

SystemC 
– ECO fixes have little impact on generated Verilog
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Tool architecture
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Design Elaboration
• SVC implemented as library on top of SystemC and Clang libraries

– Substitutes SystemC library for linking
– Runs Verilog code generation after SystemC elaboration phase

• SVC extracts design structure directly from process memory 
– Module hierarchy, links from pointers to pointee objects, values of scalar types, 

sensitivity and reset lists for processes
• SVC gets information about types form Clang AST
• Distinguish between pointer to dynamically allocated object and 

dangling pointer problem 
– Overriding new and new[] for sc_object inheritors, and sc_new for other types
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Static Analysis and Code Generation
• Constant propagation analysis

– Helps to determine number of loop iterations, eliminate dead code, substitute constant 
into generated code

• Used/defined variable analysis
– Allows to split SystemC variables into local variables and registers

• Design correctness checking
– Non-channel object read before initialization, Array out-of-bound access and 

dangling/null pointer dereference, Incomplete sensitivity lists for combinational 
methods, Inter-process communication through non-channel objects, …

• Clocked thread state generation 
• Clocked thread code generation
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SC_METHOD example
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sc_in<bool>       in;
sc_out<bool>      out;
sc_signal<bool>   s;

SC_CTOR(MyModule) {
SC_METHOD(method_proc);
sensitive << in << s;

}

void method_proc () {
bool a = in; 
if (s != 0) { 

out = a;
} else {

out = 0;
}

}

logic in, out;
logic s;

always_comb
begin // method_simple.cpp:112:5

logic a;
a = in;
if (s != 0)
begin

out <= a;
end else begin

out <= 0;
end

end



Clocked thread state generation
• SVC converts a thread into pair of always_comb and always_ff blocks 

– always_ff block implements reset and update logic for state registers 
– always_comb block contains combinational logic that computes the next state

• Clocked thread can have multiple states specified with wait()
– Number of states is the number of wait() calls
– Thread states are represented by automatically generated PROC_STATE variable
– Main case of PROC_STATE in represents the SystemC thread FSM

• Thread variables divided into two groups 
– Local variables that are always assigned before use
– Register variables that can retain their value from previous clock cycle
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SC_CTHREAD example #1
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sc_in<unsigned>    a;
sc_out<unsigned>   b;

SC_CTOR(MyModule) {
SC_CTHREAD(thread1, clk.pos());
async_reset_signal_is(rst, false);

}

void thread1 () {
unsigned i = 0;
b = 0;
while (true) {

wait();
b = i;
i = i + a;

}
}

logic [31:0] a;
logic [31:0] b, b_next;
logic [31:0] i, i_next;
always_comb begin // cthread_simple.cpp:101:5

thread1_func;
end
function void thread1_func;

b_next = b; i_next = i;
b_next = i_next;
i_next = i_next + a;

endfunction
always_ff @(posedge clk or negedge rst) 
begin : thread1_ff

if ( ~rst ) begin
i <= 0; b <= 0;

end else begin
i <= i_next; b <= b_next;

end
end



SC_CTHREAD example #2
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sc_in<sc_uint<8>>    a;
sc_out<sc_uint<8>>   b;

SC_CTOR(MyModule) {
SC_CTHREAD(thread2, clk.pos());
async_reset_signal_is(rst, false);

}

void thread2() {
sc_uint<8> i = 0;
b = 0;              
wait(); // STATE 0
while (true) {

auto j = a.read(); 
i = j + 1;
wait(); // STATE 1
b = i;   

}
}

logic PROC_STATE, PROC_STATE_next;

always_comb begin // cthread_simple.cpp:114:5
thread2_func;

end
function void thread2_func;

integer unsigned j;

b_next = b; i_next = i;

case (PROC_STATE)

0: begin
j = a; i_next = j + 1;

PROC_STATE_next = 1; return; 

end
1: begin

b_next = i_next; 

j = a; i_next = j + 1;

PROC_STATE_next = 1; return; 

end
endcase

endfunction



Clocked thread code generation
• The flow control statements if, switch and loops without wait() calls are 

converted into equivalent Verilog statements
• Loops with wait() calls are divided into several states

– Loop statement in that case is replaced by if statement

• If loop with wait() contains break and continue statements they are 
replaced with the code up to the next wait() call
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SC_CTHREAD with break example

© Accellera Systems Initiative 14

void thread_break() {
wait(); // STATE 0
while (true) {

wait(); // STATE 1
while (!enabled) {

if (stop) break;
wait(); // STATE 2

}
ready = false;

}
}

function void thread_break_func;

case (PROC_STATE)

0: ...
1: begin

if (!enabled) begin
if (stop) begin

// break begin

ready_next = 0;

PROC_STATE_next = 1; return; 

// break end

end
PROC_STATE_next = 2; return;

end
ready_next = 0;

PROC_STATE_next = 1; return;

end
2: ...

endcase
endfunction



Synthesis time for memory designs
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Design name Number of modules 
(instances)

Number of 
processes
(instances)

Generated 
code, LoC

Compilation time

A 58 (308) 161 (711) 29181 6 sec

B 19 (252) 65 (811) 20724 81 sec

C 78 (581) 291 (1470) 53404 18 sec

D 15 (57) 41 (146) 4662 2 sec

E 167 (880) 765 (2713) 87622 21 sec

F 53 (161) 173 (523) 25715 7 sec

G 57 (157) 170 (400) 21061 5 sec



Area and performance results

*Alternative implementation – Verilog code for these designs created in another way
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Design name

SVC Alternative implementation*

Area 
Reg / LUT 

Freq
MHz 

Area 
Reg / LUT 

Freq
MHz

A 2.4K / 10.2K 63 2.5K / 10.3K 62

B 54K / 145K 52 59K / 151K 53

C 15.7K / 46K 35 14.3K / 48K 25

D 547 / 1812 174 484 / 1823 172



Future plans
• Temporal assertions in SystemC with automatic translation into SVA
• Cope problem with pointers (to avoid of new/new[] patch and sc_new)

– Extend dynamic elaboration with static one
– Preprocess files to replace new with sc_new
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Questions
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