(2022

DESIGN AND VERIEICATION™

DVCOIN

CONFERENCE AND EXHIBITION

System Verification with MatchLib

Russell Klein, Program Director
Siemens EDA

SIEMENS

SYSTEMS INITIATIVE

Agenda

* Motivation
e MatchlLib

e AXI Bus Modeled in MatchlLib

* Processor Models
* Host Code
* Fast ISS
* RTL

* A Simple Design Example

SYSTEMS INITIATIVE

SIEMENS

Motivation SIEMENS

» System Level Verification needs to be done early

e RTL is available too late, and runs to slowly
* Emulation and FPGA prototypes are available after RTL

* Virtual prototypes can be available early
* But may not match final design
 Verify what you build

e MatchlLib is a synthesizable (thru HLS) communication framework

* Enables early and practical system level verification

* Higher level than RTL, much higher performance
* Throughput accurate with the implementation

SYSTEMS INITIATIVE

Path from Abstract to Detailed EIEMIERNS

e With HLS functional blocks can be
modeled and simulated at the high
level

* With MatchLib, communication
elements can now be modeled and
simulated abstractly

* We need to also bring in IP like
processors

SYSTEMS INITIATIVE

What is MatchLib? SIEMENS

* Modular Approach To Circuits and Hardware Library

* Developed by NVIDIA Labs while creating a machine learning
accelerator
* Needed a more abstract method for simulating system behavior
* Needed to be able to closely (but not exactly) model performance

* Needed to evaluate many different architectures for performance and
power

e Could not afford to design them all in RTL
e Could not afford to be significantly wrong

acce//era)

SYSTEMS INITIATIVE

What is MatchLib? SIEMENS

* Library of reusable communication models and functions
* Encapsulate verified functionality
* Encapsulate QoR optimized implementation
* Heavy use of templates and parameterization

 Common HW communication components modeled as
e C++ functions: datapath description
e C++ classes: state updating methods
» SystemC modules: self contained modules

* Testbench components

acce//era)

SYSTEMS INITIATIVE

MatchLib Addresses Complexity and Risk >'="1=N>

* The complexity/risk in many of today’s advanced HW designs has shifted from the past.

* Today’s HW designs often process huge sets of data, with large intermediate results.
* Machine Learning
* Computer Vision
* 5G Wireless

* The design of the memory/interconnect architecture and the management of data

movement in the system often has more impact on power/performance than the design
of the computation units themselves.

 Evaluating and verifying memory/interconnect architecture at RTL level is not feasible:
* Too late in design cycle
* Too much work to evaluate multiple candidate architectures.

* The most difficult/costly HW (& HW/SW) problems are found during system integration.

* If integration first occurs in RTL, it is very late and problems are very costly.
* MatchLib lets integration occur early when fixing problems is much cheaper.

acce//era)

SYSTEMS INITIATIVE

NVIDIA Matchlib vs RTL Results

RC17 SYSTEMC-BASED VERIFICATION

Functional and Performance Verification on SystemC models
FUNCTIONAL VERIFICATION

Step! - systemC self-testing Stepl2 HLS generated veriiog self testing

B3~ 7 BN
e —
@ -E

Step) - verfiog vs systemC

Most verification run on SystemC/C++,
signed off using C++ coverage tools

Reuse of SystemC testbenches on
HLS-generated RTL DUTs

Automated stall injection and in-design
assertions for improved coverage

PERFORMANCE VERIFICATION

o ° Sim-accurate SystemC models for
Latency-Insensitive Channels

Up to 30x speedup vs. RTL

0.50 1.00 1.50¢ 2.00 2.50° 3.00°

Less than 2.6% error in cycle count

ELAPSED CYCLES ERROR (SystemC vs RTL

acce//era)

SYSTEMS INITIATIVE

SIEMENS

RC17 SOC PHYSICAL DESIGN

87M Transistor SoC in TSMC 16nm FinFET

Die Size 4 mm?

Partitions 19 (5 unique)
Frequency range 510 MHz - 1.96 GHz
Voltage range 0.55-1.2 Volts

Performance (16b GMACS) 61.2-235.2

Max GMACS/W 192.1
Programmability ML workloads
(NN inference,
40— e e M|m « VIDIA

MatchlLib is Open Source on Github SIEMENS

* https://github.com/NVlabs/matchlib MatchLib —

Or search for “matchlib github” pran | Sy | S |

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

¢MatchLib

» 0 axi
» [Connections
= 7 5 » [nvhis
MatchLib is a SystemC/C++ library of commonly-used hardware functions and components that can be O
rbiter

synthesized by most commercially-available HLS tools into RTL.
G Arbiter< 1, Roundrobin >

Doxygen-generated documentation can be found here. B Abiter< size_, Static >

MatchLib is based on the Connections latency-insensitive channel implementation. Connections is included with O ariratedCrossbar

the Catapult HLS tool and is available open-source on HLSLibs. Additional documentation on the Connections
latency-insensitive channel implementation can be found in the Connections Guide.

(1 C) Arbitrated Scratchpad
G Arbitrated ScratchpadDP
B AxiAddwriteResponse

" @ AxiArbiter

Getting Started B AsiieSiaveTotiem

B AxiMasterGate

@ AxiRemoveWwrite Response

TOO| VeI'SiOﬂS G AxiSlaveToMem

@ AxislaveToReadyValid
MatchLib is regressed against the following tool/dependency verions: @ AxiSlaveToReg

G AxiSplitter

(cellera) DVEON
|UNITED STATES|

SYSTEMS INITIATIVE

More Details SIEMENS

e Good 30 minute intro video here:

* https://webinars.sw.siemens.com/nvidia-design-and-verification-of-a-1/room
* or Google “nvidia machine learning mentor events”

NVIDIA RESEARCH

High-Productivity VLSI Design Research Areas

3 RTL Design and Verification Clocking and Timing Closure
H LS BAS ED P - Raise the level of design abstraction to C++ 1000s of distributed clock
- L » with High Level Synthesis (HLS) tools generators
Brucek Khail Rangl ‘
NWDIA ailany anciy A Libraries of commonly used hardware Correct-by-construction
hV’ components in C++ communication
Collaboration between NVIDIA, Harvard, : Partition
Mentor Graphics Catapult-HLS Team Floorplanning "
Small partitions for ! .
* place-and-route tools w L]
' with auto-generated 4 L1 s
floorplans - 1" -

-

Gecellera)

SYSTEMS INITIATIVE

https://webinars.sw.siemens.com/nvidia-design-and-verification-of-a-1/room

Key Parts of MatchLib SIEMENS

* “Connections”

* Synthesizable (HLS) Message Passing Framework

» SystemC/C++ used to accurately model concurrent IO that synthesized HW
will have

e Automatic stall injection enables interconnect to be stress tested at C++ level

* Parameterized AXI4 Fabric Components

* Router/Splitter

* Arbiter

* AXI4 <-> AXl4Lite

e Automatic burst segmentation and last bit generation

* Parameterized Banked Memories, Crossbar, Reorder Buffer, Cache
* Parameterized NOC components

acce//era)

SYSTEMS INITIATIVE

MatchLib AXI4 SIEMENS

* Class that models the AXI-4 protocol using a combinatorial channel

* Configurable for
* Width of address, data, ID, and user fields
e Optional read response and “last” signal

* Access classes
* axi::axid<Cfg>::read::master and axi::axi4<Cfg>::read::slave
* axi::axid<Cfg>::write::master and axi::axi4<Cfg>::write::slave

 Current version only performs full bus-width accesses

* We extended these class with read_xx and write_xx methods for partial bus
width accesses

acce//era)

SYSTEMS INITIATIVE

AXI Configuration SIEMENS

#ifndef _ INCLUDED_SYS_AXI_STRUCT H__ e Driven off a set of emuns in a
#define __INCLUDED_SYS_AXI_STRUCT_H__ . .
. . conflguratlon struct
struct sysbus_axi4_config {
enum { .
_ * Used by classes and functions to
dataw;dth = 64, s \1
addriidth = 44, implement a specific AXI
useVariableBeatSize =0, uselast =1,
useMisalignedAddresses = 0, useBurst =1, ° Common Conflguratlons are
useWriteStrobes =1, useFixedBurst =0,
WrapBurst =0, BurstSi = 256, 1 1 1
e nanBurs S DBurstsize = provided with the library
useProt =0, useCache =0,
useRegion =0, aUserWidth =0,
wUserWidth =0, bUserWidth =0,
rUserWidth =0, idwWidth = 4,
useWriteResponses =1
I
+i
typedef typename axi::axi4_segment<sysbus_axi4_config> sysbus_axi;
typedef typename axi::axi4_segment<axi::cfg::standard> local_axi64;
typedef typename axi::axid<axi::cfg::lite_nowstrb> local_axi4_lite;
typedef typename axi::axi4_segment<axi::cfg::lite_nowstrb> Tlocal_axi4_lite_seg;
#endif

accellera

SYSTEMS INITIATIVE

AX| Bus Segments

class my_hw_module : public sc_module, public sysbus_axi

{

public:
//== Ports
sc_in<bool> clk;
sc_in<bool> reset_bar;
r_master read_master;
w_master write_master;
r_slave read_slave;
w_slave write_slave;

//== Local signals

r_chan read_bus_signals;
w_chan write_bus_signals;

SYSTEMS INITIATIVE

SIEMENS

From configuration struct, bus
segments and ports are defined

r_master, w_master are ports
with the sc_in/sc_out to attach to
a slave

r_slave, w_slave are ports
with the sc_in/sc_out to attach to
a master

r_chan, w_chan are signal
bundles used in a module

All these have methods that are
used to affect traffic on the bus

Payload Definitions SIEMENS

//== Local Signals * Each bus segment aw, w, b, ar, and
aw_payload aw; r have “payload” structures that
‘g_ggﬁg:g b fi f

bpaylead b7, are qle mgd rom the

r_payload ri configuration

//== send data method . \
» contain signals for each bus segment

void send_it(sc_int addr, sc_int *data, sc_int count, sc_int)

{

aw.addr = addr; * These are used to affect data

aw.len = count;

aw. id = master_id; tranSferS On the bUS

w_master.aw.Push(aw) ; * Push() and Pop() the payloads in the

w.strb = OxF;

for (int i=0; i<count; i++) {
w.data = datalil;
w.last = (i == count-1) ? @ : 1;
w_master.w.Push(w);

b

b = w_master.b.Pop();

if (b.resp != Enc::XRESP::0KAY) printf(“something bad happened! \n”);

SYSTEMS INITIATIVE

Creating an AXI Fabric SIEMENS

1/O AXI

RISC-V
Rocket

Core Memory AXI

AXI

Fabric

Inference
Accel

accellera

Creating an AXI Fabric SIEMENS

Splitters Arbiters

1/O AXI &

Memory AXI

RISC-V
Rocket
Core

accellera

Fabric - Splitters PIEMENS

 Splitters fan out the AXI signals

class fabric : public sc_module, public sysbus_axi

/7= Ports based on the “addr_bounds”
sc_in<bool> clk;
sc_in<bool> reset_bar; array
r_slave r_cpu, r_acc;
w_slave wW_Cpu, w_acc;
ﬁiiiahocal Sri‘?gfnljgmem, r_cpu2uart, r_cpu2acc; 4 ThIS COde fragment ShOWS
w_chan w_cpu2mem, w_cpu2uart, w_cpu2acc; 5 c

items relevant to splitters
r_chan r_acc2mem, r_acc2uart;
w_chan w_acc2mem, w_acc2uart; ° OmItS other details

sc_signal<32> addr_bounds[3][2];

//== Instances
axi_splitter<sysbus_axi4_config, 3, 32> cpu_router;
axi_splitter<sysbus_axi4_config, 2, 32> acc_router;

SC_CTOR(fabric) {
addr_bounds [0] [@]
addr_bounds[1] [@]
addr_bounds[2] [0]

0x70000000; addr_bounds[0][1]
0x60000000; addr_bounds([1][1]
0x60010000; addr_bounds[2][1]

Ox7FFFFFFF; // shared mem
0x6000FFFF; // UART
Ox6001FFFF; // Accelerator

// attach signals to routers

accellera

SYSTEMS INITIATIVE

Fabric - Arbiters MIEMENS

e Arbiters act as a multiplexer
class fabric : public sc_module, public sysbus_axi SeleCtlng d transaCtlon from
{ the splitters

//== Ports
sc_in<bool> clk;
sc_in<bool> reset_bar;

r_master r_mem, r_uart, r_acc;
umaster w_mem, w_uart, w_acc; * This code fragment shows
//== Local signals 1 1
r_chan r_cpu2mem, r_cpu2uart, r_cpu2acc; Items relevant to arblters
w_chan w_cpu2mem, w_cpu2uart, w_cpu2acc; ! .
* Omits other details
r_chan r_acc2mem, r_acc2uart;
w_chan w_acc2mem, w_acc2uart;

//== Instances

axi_arbiter<sysbus_axi4_config, 2, 4> mem_arbiter;
axi_arbiter<sysbus_axi4_config, 2, 4> uart_arbiter;
axi_arbiter<sysbus_axi4_config, 1, 1> acc_arbiter;

SC_CTOR(fabric) {
// attach signals to routers

accellera ovg:@i

SYSTEMS INITIATIVE

Including a CPU in the Simulation PIEMENS

* No CPU models are available with MatchLib interfaces
* Some type of "wrapper” is required to interface CPU model to the design

* CPU Models

* Host Code Execution (HCE)
* Very fast, functionally accurate

* Fast Instruction Set Simulators (Spike, QEMU, AFM, OVPSim)

* Runs target instruction set, functionally accurate

* RTL

* Slow, but clock cycle accurate

SYSTEMS INITIATIVE

: SIEMENS
Host Code Execution
e Code is compiled for the host (simulation computer)
* Annotations are made for bus cycles to be sent to hardware

* Code activity is not included in the simulation
* |nstruction fetches and stack/data references are omitted
* This may or may not impact your verification goals

SYSTEMS INITIATIVE

HCE Example SIEMENS

AXI
segment

CPU /

UART

(Host
Program)

Shared
Memory

Inference
Accel

. SystemC/MatchLib

. C/C++ (Host code)

accellera

SYSTEMS INITIATIVE

{

public sysbus_axi

public:

sc_in<bool> clk;
sc_in<bool> reset_n;

r_master read_master;
w_master write_master;

void sw_thread()

}

write_master.reset();
read_master.reset();

wait();
cpu_thread();

sc_stop();

SC_CTOR(host_code_tb)

{

SYSTEMS INITIATIVE

HCE Example — SystemC wrapper PIEMENS

class host_code_tb : public sc_module,

* Wrapper for HCE function

* Defines clk, reset, and bus
connection

e Calls “cpu_thread()” which can
perform any function

HCE Example — cpu_thread SIEMENS

{

void cpu_thread()

int x;
int errors;

TB_WRITE(@x1234, OXA5A5);
x = TB_READ(0x1234);

if (x != 0xA5A5) {
errors++;
report_error(MISMATCH, 0x1234);
}

return;

 cpu_thread() can perform read and write
operations on the AXI bus
e Typically, through macros so code can be

consistent through different stages of
verification

e cpu_thread is a member function of class
host_code tb

SYSTEMS INITIATIVE

HCE Example — Bus Interface Macros PIEMENS

#ifdef HOST * Allows for common code for HCE and
#define TB_READ(ADDR) \ Cross com plled
. (read_master.single_read(ADDR) .data)
T et oy |+ Macros can be defined for different
#else sized accesses and named peripheral
registers

» Can drive burst cycles (approximating
cache line accesses)

SYSTEMS INITIATIVE

Fast Processor Simulator STEMENS

» Code is cross compiled for the target processor
* Running actual ARM or RISC-V instructions

* Processor simulator interprets instructions and emulates behavior of
the program on the target processor

* Bus cycles are generated using address dereferences
* works the same as on a real processor

* Like HCE, code activity is (typically) not included in the simulation

* Local memory is used for code and data storage
* |nstruction fetches and stack/data references are omitted from simulation

e This may or may not impact your verification goals

SYSTEMS INITIATIVE

Fast Processor Example PIEMENS

IPC Channels SystemC Process
\ UART
CPU T AXI
(1S5) e AXI Shared
Fabric Memory
Inference
Code & data Accel
memory . SystemC/MatchLib

Fast Processor Model

ISS Process

accellera

Fast Processor Simulator STEMENS

* There are many fast processor models
* QEMU, Spike, OVPSim, AFM, etc.

e All run in the 100s -1,000s of millions of instructions per second
* Not clock cycle accurate, usually do not model caches

 Each will have different methods for capturing bus cycles
* We used QEMU (Quick EMUlator) http://www.qgemu.org

SYSTEMS INITIATIVE

http://www.qemu.org/

QEMU — co-simulation basics, SystemC side

* AXI transactor thread launches QEMU process, with executable image
e Can be done with threads, more complex but faster

* Thread creates sockets for IPC
* Waits on reset()
* Then waits on bus cycle or advance command from socket

* Get bus cycle or advance command
* Run bus cycle and return result or advance a number of wait() operations

SYSTEMS INITIATIVE

QEMU — co-simulation basics, ISS side ~ >'®MEN®

* Defines I/O memory region to trap bus cycles
- memory_region_init_io()

e Connects to sockets for IPC

e Using TCG plugin, set up instruction count limit
* QEMU advances only a certain amount of time, then communicates with HW

* Run to next I/O cycle (bus operation) or instruction count limit
* |f instruction count limit hit, send “advance” command
* If 1/O cycle hit, send cycle and get result

SYSTEMS INITIATIVE

RTL Processor Models PIEMENS

* Neither HCE nor ISS models of software behavior are timing accurate

* No model of code and data accesses
* No model of the impact of caches
* No model of the computation time

* |[F the processor and software materially impact the performance of
the system, then a realistic model is needed
e Usually, this is RTL

* An RTL processor can be combined with MatchlLib and SystemC for
higher performance, but throughput accurate verification

* RTL + SystemC is well understood
* But there are some quirks with MatchLib

SYSTEMS INITIATIVE

RTL Example PIEMENS

Logic Simulation Process

- UART
<
cPU 2
(RTL) R 5 AXI Shared
Fabric Memory
Inference
Code & data Accel
memory . SystemC/MatchLib

Verilog RTL

accellera

SYSTEMS INITIATIVE

Top level Verilog

module top (input clk, input reset_bar);

wire aw_ready;
wire aw_valid;
wire [75:0] aw_msg; // repeat for all segments

systemc_subsystem_wrapper scsw(// SystemC subsystem
.clk(clk), .reset_bar(reset_bar),

.aw_ready_port (aw_ready),
.aw_valid_port (aw_valid),
.aw_msg_port (aw_msg), // repeat for all segments

);

rocket_subsystem risc_v(// RTL processor
.clk(clk), .reset_bar(reset_bar),

.aw_ready_port (aw_ready),
.aw_valid_port (aw_valid),
.aw_msg_port (aw_msg), // repeat for all segments

SIEMENS

* All AXI segments declared as
ready/valid/msg triplet

e Size would be a summation of field
widths

SYSTEMS INITIATIVE

SystemC Sub-system Wrapper

{
sc_in<bool>
sc_in<bool>

sc_in<bool>
sc_in<bool>

{

SCS.w_Cpu.
SCS.w_Cpu.
SCS.w_Cpu.

// repeat

SC_MODULE(systemc_subsystem_wrapper)

clk;
reset_bar;

aw_ready_port;
aw_valid_port;

sc_in<sc_1lv<76>> aw_msg_port;
// repeat for all segments

systemc_sub_system scs;
SC_CTOR(systemc_subsystem_wrapper)

scs.clk(clk);
Scs.reset_

bar(reset_bar);

aw. rdy(aw_ready_port)
aw.val(aw_valid_port)

aw.msg(aw_msg_port);

for all segments

SIEMENS

* “msg” bundles passed to SystemC as
sc_lv logic vectors

* ready/valid/msg triplet is mapped to
<port_name>.<seg>.[rdy|val| msg]

SYSTEMS INITIATIVE

Rocket Subsystem Verilog

module rocket_subsystem (input clk, input reset_bar,
input aw_ready,
output aw_valid,
output [75:0] aw_msg,
// repeat for all segments

);

// declarations and code here...
// assignments to/from msg to local signals
assign aw_msg = {aw_len, aw_addr, aw_id};
assign w_msg = {w_strb, w_last, w_data};

assign {b_resp, b_id} = b_msg;

assign ar_msg = {ar_len, ar_addr, ar_id};
assign {r_last, r_resp, r_data, r_id} = r_msg;

SIEMENS

* “msg” bundles are passed into
System Verilog module

* Break out into individual signals
using the Verilog concatenate
operator

* For ordering, you need to dig
through matchlib/axi code to find
declaration.

* Pro Tip: or compile and bring up in a
waveform viewer or debugger

SYSTEMS INITIATIVE

SIEMENS

* Yolo object recognition
algorithm

* Characterize
function/performance of Al
accelerator with MatchLib and
RISC-V processor

accellera

SYSTEMS INITIATIVE

https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

Example Design PIEMENS

1/O AXI

RISC-V
Rocket

Core Memory AXI

AXI

Fabric

Inference
Accel

accellera

Results

SIEMENS

Processor Accelerator | Run time for 1 Accuracy
inference (seconds)

Host Code

Host Code

Host Code

Fast ISS (QEMU)
RTL

RTL

accellera

C++ (N/A)
CONNECTIONS_FAST_SIM
CONNECTIONS_ACCURATE_SIM
CONNECTIONS_ACCURATE_SIM
CONNECTIONS_ACCURATE_SIM
RTL

C++
C++
C++
C++

RTL

1,027
6,455

7,272

97,329

(est) 2,600,000

n/a
n/a
n/a
+/- 1%

SYSTEMS INITIATIVE

System Verification With MatchLib PIEMENS

* MatchLib enables earlier verification at the system level
 Verify what you build

* A processor can be brought into the simulation in several forms
* Host Code Execution

e Fast Instruction Set Simulator
* RTL

* Enables fast functional verification, and slower throughput accurate
verifications

* Much faster and earlier than possible with traditional design cycles

Code available at: https://github.com/hlslibs/ac ml/tree/master/designs/HLS SEMINAR 2021/system design

SYSTEMS INITIATIVE

https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

SIEMENS

(2022

DESIGN AND VERIEICATION™

DVCOIN

CONFERENCE AND EXHIBITION

UNITED STATES
Thank You

Russell.Klein@Siemens.com

https://github.com/russ-klein

Questions or Comments? SIEMENS

2 |/

SYSTEMS INITIATIVE

