
System Verification with MatchLib
Russell Klein, Program Director

Siemens EDA

Agenda
• Motivation
• MatchLib
• AXI Bus Modeled in MatchLib
• Processor Models

• Host Code
• Fast ISS
• RTL

• A Simple Design Example

Motivation
• System Level Verification needs to be done early

• RTL is available too late, and runs to slowly
• Emulation and FPGA prototypes are available after RTL

• Virtual prototypes can be available early
• But may not match final design
• Verify what you build

• MatchLib is a synthesizable (thru HLS) communication framework
• Enables early and practical system level verification
• Higher level than RTL, much higher performance
• Throughput accurate with the implementation

Path from Abstract to Detailed
• With HLS functional blocks can be

modeled and simulated at the high
level
• With MatchLib, communication

elements can now be modeled and
simulated abstractly

• We need to also bring in IP like
processors

What is MatchLib?
• Modular Approach To Circuits and Hardware Library
• Developed by NVIDIA Labs while creating a machine learning

accelerator
• Needed a more abstract method for simulating system behavior
• Needed to be able to closely (but not exactly) model performance

• Needed to evaluate many different architectures for performance and
power
• Could not afford to design them all in RTL
• Could not afford to be significantly wrong

© Accellera Systems Initiative 5

What is MatchLib?
• Library of reusable communication models and functions

• Encapsulate verified functionality
• Encapsulate QoR optimized implementation
• Heavy use of templates and parameterization

• Common HW communication components modeled as
• C++ functions: datapath description
• C++ classes: state updating methods
• SystemC modules: self contained modules

• Testbench components

© Accellera Systems Initiative 6

MatchLib Addresses Complexity and Risk
• The complexity/risk in many of today’s advanced HW designs has shifted from the past.
• Today’s HW designs often process huge sets of data, with large intermediate results.

• Machine Learning
• Computer Vision
• 5G Wireless

• The design of the memory/interconnect architecture and the management of data
movement in the system often has more impact on power/performance than the design
of the computation units themselves.

• Evaluating and verifying memory/interconnect architecture at RTL level is not feasible:
• Too late in design cycle
• Too much work to evaluate multiple candidate architectures.

• The most difficult/costly HW (& HW/SW) problems are found during system integration.
• If integration first occurs in RTL, it is very late and problems are very costly.
• MatchLib lets integration occur early when fixing problems is much cheaper.

© Accellera Systems Initiative 7

NVIDIA Matchlib vs RTL Results

© Accellera Systems Initiative 8

MatchLib is Open Source on Github
• https://github.com/NVlabs/matchlib

© Accellera Systems Initiative 9

Or search for “matchlib github”

More Details
• Good 30 minute intro video here:

• https://webinars.sw.siemens.com/nvidia-design-and-verification-of-a-1/room
• or Google “nvidia machine learning mentor events”

© Accellera Systems Initiative 10

https://webinars.sw.siemens.com/nvidia-design-and-verification-of-a-1/room

Key Parts of MatchLib
• “Connections”

• Synthesizable (HLS) Message Passing Framework
• SystemC/C++ used to accurately model concurrent IO that synthesized HW

will have
• Automatic stall injection enables interconnect to be stress tested at C++ level

• Parameterized AXI4 Fabric Components
• Router/Splitter
• Arbiter
• AXI4 <-> AXI4Lite
• Automatic burst segmentation and last bit generation

• Parameterized Banked Memories, Crossbar, Reorder Buffer, Cache
• Parameterized NOC components

© Accellera Systems Initiative 11

• Class that models the AXI-4 protocol using a combinatorial channel
• Configurable for

• Width of address, data, ID, and user fields
• Optional read response and “last” signal

• Access classes
• axi::axi4<Cfg>::read::master and axi::axi4<Cfg>::read::slave
• axi::axi4<Cfg>::write::master and axi::axi4<Cfg>::write::slave

• Current version only performs full bus-width accesses
• We extended these class with read_xx and write_xx methods for partial bus

width accesses

© Accellera Systems Initiative 12

MatchLib AXI4

AXI Configuration
• Driven off a set of emuns in a

configuration struct
• Used by classes and functions to

implement a specific AXI
• Common configurations are

provided with the library

#ifndef __INCLUDED_SYS_AXI_STRUCT_H__
#define __INCLUDED_SYS_AXI_STRUCT_H__

struct sysbus_axi4_config {
enum {

dataWidth = 64,
addrWidth = 44,

useVariableBeatSize = 0, useLast = 1,
useMisalignedAddresses = 0, useBurst = 1,
useWriteStrobes = 1, useFixedBurst = 0,
useWrapBurst = 0, maxBurstSize = 256,
useQoS = 0, useLock = 0,
useProt = 0, useCache = 0,
useRegion = 0, aUserWidth = 0,
wUserWidth = 0, bUserWidth = 0,
rUserWidth = 0, idWidth = 4,
useWriteResponses = 1

};
};

typedef typename axi::axi4_segment<sysbus_axi4_config> sysbus_axi;
typedef typename axi::axi4_segment<axi::cfg::standard> local_axi64;
typedef typename axi::axi4<axi::cfg::lite_nowstrb> local_axi4_lite;
typedef typename axi::axi4_segment<axi::cfg::lite_nowstrb> local_axi4_lite_seg;

#endif

AXI Bus Segments
• From configuration struct, bus

segments and ports are defined
• r_master, w_master are ports

with the sc_in/sc_out to attach to
a slave

• r_slave, w_slave are ports
with the sc_in/sc_out to attach to
a master

• r_chan, w_chan are signal
bundles used in a module

• All these have methods that are
used to affect traffic on the bus

class my_hw_module : public sc_module, public sysbus_axi
{
public:

//== Ports

sc_in<bool> clk;
sc_in<bool> reset_bar;

r_master read_master;
w_master write_master;

r_slave read_slave;
w_slave write_slave;

//== Local signals

r_chan read_bus_signals;
w_chan write_bus_signals;

Payload Definitions
• Each bus segment aw, w, b, ar, and

r have “payload” structures that
are defined from the
configuration
• contain signals for each bus segment

• These are used to affect data
transfers on the bus
• Push() and Pop() the payloads in the

//== Local Signals

aw_payload aw;
w_payload w;
b_payload b;
ar_payload ar;
r_payload r;

//== send data method

void send_it(sc_int addr, sc_int *data, sc_int count, sc_int)
{

aw.addr = addr;
aw.len = count;
aw.id = master_id;

w_master.aw.Push(aw);

w.strb = 0xF;
for (int i=0; i<count; i++) {

w.data = data[i];
w.last = (i == count-1) ? 0 : 1;
w_master.w.Push(w);

}

b = w_master.b.Pop();

if (b.resp != Enc::XRESP::OKAY) printf(“something bad happened! \n”);
}

Creating an AXI Fabric

RISC-V
Rocket
Core

I/O AXI

Memory AXI

AXI
Fabric

UART

Shared
Memory

Inference
Accel

Code &
Data

Memory

Creating an AXI Fabric

RISC-V
Rocket
Core

I/O AXI

Memory AXI

UART

Shared
Memory

Inference
Accel

Code &
Data

Memory

AXI
Fabric

Splitters Arbiters

Fabric - Splitters
• Splitters fan out the AXI signals

based on the “addr_bounds”
array

• This code fragment shows
items relevant to splitters
• Omits other details

class fabric : public sc_module, public sysbus_axi
{

//== Ports
sc_in<bool> clk;
sc_in<bool> reset_bar;

r_slave r_cpu, r_acc;
w_slave w_cpu, w_acc;

//== Local signals
r_chan r_cpu2mem, r_cpu2uart, r_cpu2acc;
w_chan w_cpu2mem, w_cpu2uart, w_cpu2acc;

r_chan r_acc2mem, r_acc2uart;
w_chan w_acc2mem, w_acc2uart;

sc_signal<32> addr_bounds[3][2];

//== Instances
axi_splitter<sysbus_axi4_config, 3, 32> cpu_router;
axi_splitter<sysbus_axi4_config, 2, 32> acc_router;

SC_CTOR(fabric) {
addr_bounds[0][0] = 0x70000000; addr_bounds[0][1] = 0x7FFFFFFF; // shared mem
addr_bounds[1][0] = 0x60000000; addr_bounds[1][1] = 0x6000FFFF; // UART
addr_bounds[2][0] = 0x60010000; addr_bounds[2][1] = 0x6001FFFF; // Accelerator

// attach signals to routers

Fabric - Arbiters
• Arbiters act as a multiplexer

selecting a transaction from
the splitters

• This code fragment shows
items relevant to arbiters
• Omits other details

class fabric : public sc_module, public sysbus_axi
{

//== Ports
sc_in<bool> clk;
sc_in<bool> reset_bar;

r_master r_mem, r_uart, r_acc;
w_master w_mem, w_uart, w_acc;

//== Local signals
r_chan r_cpu2mem, r_cpu2uart, r_cpu2acc;
w_chan w_cpu2mem, w_cpu2uart, w_cpu2acc;

r_chan r_acc2mem, r_acc2uart;
w_chan w_acc2mem, w_acc2uart;

//== Instances
axi_arbiter<sysbus_axi4_config, 2, 4> mem_arbiter;
axi_arbiter<sysbus_axi4_config, 2, 4> uart_arbiter;
axi_arbiter<sysbus_axi4_config, 1, 1> acc_arbiter;

SC_CTOR(fabric) {
// attach signals to routers

Including a CPU in the Simulation
• No CPU models are available with MatchLib interfaces

• Some type of ”wrapper” is required to interface CPU model to the design

• CPU Models
• Host Code Execution (HCE)

• Very fast, functionally accurate
• Fast Instruction Set Simulators (Spike, QEMU, AFM, OVPSim)

• Runs target instruction set, functionally accurate
• RTL

• Slow, but clock cycle accurate

Host Code Execution
• Code is compiled for the host (simulation computer)
• Annotations are made for bus cycles to be sent to hardware
• Code activity is not included in the simulation

• Instruction fetches and stack/data references are omitted
• This may or may not impact your verification goals

HCE Example

CPU
(Host

Program)
AXI

Fabric

UART

Shared
Memory

Inference
Accel

AXI
segment

SystemC/MatchLib

C/C++ (Host code)

HCE Example – SystemC wrapper
• Wrapper for HCE function
• Defines clk, reset, and bus

connection
• Calls “cpu_thread()” which can

perform any function

class host_code_tb : public sc_module,
public sysbus_axi

{
public:

sc_in<bool> clk;
sc_in<bool> reset_n;

r_master read_master;
w_master write_master;

void sw_thread()
{

write_master.reset();
read_master.reset();

wait();

cpu_thread();

sc_stop();
}

SC_CTOR(host_code_tb)
{

HCE Example – cpu_thread
• cpu_thread() can perform read and write

operations on the AXI bus
• Typically, through macros so code can be

consistent through different stages of
verification

• cpu_thread is a member function of class
host_code_tb

void cpu_thread()
{

int x;
int errors;

TB_WRITE(0x1234, 0xA5A5);
x = TB_READ(0x1234);

if (x != 0xA5A5) {
errors++;
report_error(MISMATCH, 0x1234);

}

return;
}

HCE Example – Bus Interface Macros
• Allows for common code for HCE and

cross compiled
• Macros can be defined for different

sized accesses and named peripheral
registers
• Can drive burst cycles (approximating

cache line accesses)

#ifdef HOST

#define TB_READ(ADDR) \
(read_master.single_read(ADDR).data)

#define TB_WRITE(ADDR, DATA) \
(write_master.single_write((ADDR), (DATA)))

#else // embedded code

#define TB_READ(ADDR) \
(*((volatile unsigned int *) (ADDR)))

#define TB_WRITE(ADDR, DATA) \
*((volatile unsigned int *) (ADDR)) = (DATA)

#endif

#define SET_SIZE_REGISTER(VALUE) \
TB_WRITE(SIZE_REG_ADDR, VALUE)

#define GET_SIZE_REGISTER \
TB_READ(SIZE_REG_ADDR)

Fast Processor Simulator
• Code is cross compiled for the target processor

• Running actual ARM or RISC-V instructions

• Processor simulator interprets instructions and emulates behavior of
the program on the target processor
• Bus cycles are generated using address dereferences

• works the same as on a real processor

• Like HCE, code activity is (typically) not included in the simulation
• Local memory is used for code and data storage
• Instruction fetches and stack/data references are omitted from simulation
• This may or may not impact your verification goals

Fast Processor Example
IPC Channels

Code & data
memory

ISS Process

SystemC Process

AXI
Xactor AXI

Fabric

UART

Shared
Memory

Inference
Accel

SystemC/MatchLib

Fast Processor Model

CPU
(ISS)

Fast Processor Simulator
• There are many fast processor models

• QEMU, Spike, OVPSim, AFM, etc.

• All run in the 100s -1,000s of millions of instructions per second
• Not clock cycle accurate, usually do not model caches

• Each will have different methods for capturing bus cycles
• We used QEMU (Quick EMUlator) http://www.qemu.org

http://www.qemu.org/

QEMU – co-simulation basics, SystemC side
• AXI transactor thread launches QEMU process, with executable image

• Can be done with threads, more complex but faster

• Thread creates sockets for IPC
• Waits on reset()
• Then waits on bus cycle or advance command from socket
• Get bus cycle or advance command

• Run bus cycle and return result or advance a number of wait() operations

QEMU – co-simulation basics, ISS side
• Defines I/O memory region to trap bus cycles

• memory_region_init_io()
• Connects to sockets for IPC
• Using TCG plugin, set up instruction count limit

• QEMU advances only a certain amount of time, then communicates with HW
• Run to next I/O cycle (bus operation) or instruction count limit

• If instruction count limit hit, send “advance” command
• If I/O cycle hit, send cycle and get result

RTL Processor Models
• Neither HCE nor ISS models of software behavior are timing accurate

• No model of code and data accesses
• No model of the impact of caches
• No model of the computation time

• IF the processor and software materially impact the performance of
the system, then a realistic model is needed
• Usually, this is RTL

• An RTL processor can be combined with MatchLib and SystemC for
higher performance, but throughput accurate verification
• RTL + SystemC is well understood

• But there are some quirks with MatchLib

RTL Example

Code & data
memory

Logic Simulation Process

AXI
Fabric

UART

Shared
Memory

Inference
Accel

SystemC/MatchLib

Verilog RTL

CPU
(RTL)

System
C/

Verilog

Top level Verilog
module top (input clk, input reset_bar);

wire aw_ready;
wire aw_valid;
wire [75:0] aw_msg; // repeat for all segments

systemc_subsystem_wrapper scsw(// SystemC subsystem
.clk(clk), .reset_bar(reset_bar),

.aw_ready_port (aw_ready),

.aw_valid_port (aw_valid),

.aw_msg_port (aw_msg), // repeat for all segments
);

rocket_subsystem risc_v(// RTL processor
.clk(clk), .reset_bar(reset_bar),

.aw_ready_port (aw_ready),

.aw_valid_port (aw_valid),

.aw_msg_port (aw_msg), // repeat for all segments

• All AXI segments declared as
ready/valid/msg triplet

• Size would be a summation of field
widths

SystemC Sub-system Wrapper
SC_MODULE(systemc_subsystem_wrapper)
{

sc_in<bool> clk;
sc_in<bool> reset_bar;

sc_in<bool> aw_ready_port;
sc_in<bool> aw_valid_port;
sc_in<sc_lv<76>> aw_msg_port;
// repeat for all segments

systemc_sub_system scs;

SC_CTOR(systemc_subsystem_wrapper)
{

scs.clk(clk);
scs.reset_bar(reset_bar);

scs.w_cpu.aw.rdy(aw_ready_port);
scs.w_cpu.aw.val(aw_valid_port);
scs.w_cpu.aw.msg(aw_msg_port);

// repeat for all segments

• “msg” bundles passed to SystemC as
sc_lv logic vectors

• ready/valid/msg triplet is mapped to
<port_name>.<seg>.[rdy|val|msg]

Rocket Subsystem Verilog

module rocket_subsystem (input clk, input reset_bar,
input aw_ready,
output aw_valid,
output [75:0] aw_msg,
// repeat for all segments

);

// declarations and code here...

// assignments to/from msg to local signals

assign aw_msg = {aw_len, aw_addr, aw_id};
assign w_msg = {w_strb, w_last, w_data};
assign {b_resp, b_id} = b_msg;

assign ar_msg = {ar_len, ar_addr, ar_id};
assign {r_last, r_resp, r_data, r_id} = r_msg;

• “msg” bundles are passed into
System Verilog module

• Break out into individual signals
using the Verilog concatenate
operator

• For ordering, you need to dig
through matchlib/axi code to find
declaration.

• Pro Tip: or compile and bring up in a
waveform viewer or debugger

Example
• Yolo object recognition

algorithm
• Characterize

function/performance of AI
accelerator with MatchLib and
RISC-V processor

Code available at: https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

Example Design

RISC-V
Rocket
Core

I/O AXI

Memory AXI

AXI
Fabric

UART

Shared
Memory

Inference
Accel

Code &
Data

Memory

Results
Processor Interconnect Accelerator Run time for 1

inference (seconds)
Accuracy

Host Code C++ (N/A) C++ 12 n/a
Host Code CONNECTIONS_FAST_SIM C++ 1,027 n/a

Host Code CONNECTIONS_ACCURATE_SIM C++ 6,455 n/a

Fast ISS (QEMU) CONNECTIONS_ACCURATE_SIM C++ 7,272 n/a
RTL CONNECTIONS_ACCURATE_SIM C++ 97,329 +/- 1%

RTL RTL RTL (est) 2,600,000

System Verification With MatchLib
• MatchLib enables earlier verification at the system level

• Verify what you build

• A processor can be brought into the simulation in several forms
• Host Code Execution
• Fast Instruction Set Simulator
• RTL

• Enables fast functional verification, and slower throughput accurate
verifications
• Much faster and earlier than possible with traditional design cycles

Code available at: https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

https://github.com/hlslibs/ac_ml/tree/master/designs/HLS_SEMINAR_2021/system_design

Thank You
Russell.Klein@Siemens.com

https://github.com/russ-klein

Questions or Comments?

?? || //

