
System-Level Simulation of a SPAD-Based
Time-of-Flight Sensor in SystemVerilog

Seungah Park1, Hyeongseok Seo2, Canxing Piao2,
Jaemin Park3, Jaehyuk Choi1,2, Jung-Hoon Chun1,2

1Sungkyunkwan University, Suwon, Korea
2SolidVue Inc., Seongnam, Korea

3Scientific Analog Inc., Seoul, Korea

Contents
• Introduction

• Statistical Behavioral Modeling of SPAD

• Modeling of a SPAD-Based Sensor

• Testbench for a SPAD-Based Sensor Simulation

• Simulation Results

• Summary

Direct Time-of-Flight Method
• Detect direct time difference (TOF)

• Depth = c/2 × TOF (c ≈ 3×108 [m/s])

• The sensor's receiver utilizes a single-
photon avalanche diode (SPAD)

A Direct TOF Sensor
• 4 Primary Components

• To predict the accuracy of the TOF sensor
• we need a SPAD model that simulates the physical and statistical characteristics

• A simulation platform is essential

• (1) SPAD array, analog front-end (AFE)
and signal combiner

• (2) Time-to-digital converter (TDC)
• (3) Histogramming and digital signal

processing
• (4) Timing controller

XMODEL: Accurate Simulation in SystemVerilog
• XMODEL: plug-in extension to SystemVerilog developed by Scientific Analog

• xbit type can express precise timing information without being limited by the
timestep of SystemVerilog simulation

SPAD & AFE Operation

• SPAD functions in Geiger mode

• Upon the incidence of a photon on
the SPAD, a digital pulse is generated

• The width of the digital pulse is
referred to as the SPAD dead-time
(Tdead)

SPAD Characteristics
• Dark count rate (DCR), Dead-time (Tdead)

• Photon detection probability (PDP)

DCR, Tdead PDP

SPAD Modeling
• Calculates the generation time of noise pulse and photon-induced pulse

through a Poisson process

• Generates output pulses with a user-defined pulse width of Tdead

• Proposed SPAD
modeling performs:
• Noise pulse generation

• Photon-induced pulse
generation

• Dead time control

Noise Pulse Generator
• Tnoise Generator generates the randomized timing of noise pulse initiation, Tnoise

• The mean frequency of noise pulse generation is DCR

• Single Pulse Generator creates noise_pulse
with a width of Tdead

Tnoise Generator
• Tnoise is ascertained from the Poisson process with a rate of 𝜆

• The probability that the first dark count generation time, 𝑋1, exceeds time t
• 𝑃 𝑋1 > 𝑡 = 𝑃 𝑛𝑜 𝑑𝑎𝑟𝑘 𝑐𝑜𝑢𝑛𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 𝑡 = 𝑒−𝜆𝑡

• The probability that the first dark count generation occurs within the time t
• 𝑃 𝑋1 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

• The interarrival time 𝑡 =
ln 1−𝑃 𝑋1≤𝑡

−𝜆
• 𝑡 → Tnoise

• 𝑃 𝑋1 ≤ 𝑡 → rand_uniform(0,1) function

• 𝜆 → DCR

Tnoise Generator (2)

• Tnoise =
ln(1−𝑟𝑎𝑛𝑑_𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0,1))

−𝐷𝐶𝑅

• Tnoise is updated every time gen has a falling edge
• Considering Tnoise ≥ Tdead

module Tnoise_gen

…

//For initial Tnoise (TDCR)

always @(posedge RSTB) begin

random_dark = rand_uniform(0,1);

…

TDCR = $ln(1-random_dark) / (-DCR);

end

//For updating Tnoise when gen has a falling edge

always @(negedge gen) begin

TDCR = 0; random_dark = rand_uniform(0,1);

…

TDCR = $ln(1-random_dark) / (-DCR);

//For considering dead-time (Tdead)

while(TDCR < Tdead) begin

random_dark = rand_uniform(0,1);

…

TDCR = TDCR + $ln(1-random_dark) / (-DCR);

end

TDCR = TDCR – (Tdead/2);

end

assign Tnoise = TDCR;

endmodule

Photon-induced Pulse Generator
• Tph Generator calculates the photon-induced pulse generation time, Tph

• Inputs: the light pulse shape (pulse_shape), TOF, light intensity (INT), and PDP

Tph Generator
• It takes the light pulse shape (pulse_shape), photon arrival time (TOF),

light intensity (INT), and photon detection probability (PDP) as inputs

Tph Generator (2)
• 1. pulse_shape_disc is obtained by discretizing the input pulse_shape

• 2. pulse_shape_int is achieved by normalizing pulse_shape_disc and multiplying

it by INT
• Tres: resolution time of pulse_shape_int

module Tph_gen

…

always @(posedge RSTB) begin

signal_sequence = 0; //Photon detection time within input light pulse

Tph = 0; //Photon detection time (= TOF + signal_sequence)

pulse_sum = 0; //Sum of discretized pulse_shape data (pulse_shape_disc)

//For discretizing pulse_shape

//(Resolution time of pulse_shape_disc = (interval * 0.02) ns)

for(i=0; i<(pulse_len/interval); i++) begin

pulse_shape_disc[i+1] = pulse_shape[i*interval+int’(interval/2)+1];

end

//For normalizing pulse_shape_disc

for(j=0; j<(pulse_len/interval)+1; j++) begin

if(pulse_shape_disc[j]<0) pulse_shape_disc[j] = 0;

pulse_sum = pulse_sum + pulse_shape_disc[j];

end

for(k=0; k<(pulse_len/interval)+1; k++) begin

pulse_shape_int[k] = pulse_shape_disc[k] / pulse_sum * INT;

end

Tres = 0.02 * interval; //Tres: Resolution time of pulse_shape_int

Tph Generator (3)
• 3. Use the cumulative distribution function (cdf) of the Poisson process

to calculate at which point within pulse_shape_int (𝜆) the SPAD reacts.

• cdf = σ𝑘=0
𝑛 𝑒−𝜆𝜆𝑘

𝑘!

• The value of k increments by one until cdf > thres_cdf (=rand_uniform(0,1))

• The derived k: the number of photons successfully reaching the SPAD

//For modeling photon arrival and SPAD avalanche

for(i=0; i<(pulse_len/interval)+1; i++) begin

k = 0; cdf = 0; kfactorial = 1; thres_cdf = rand_uniform(0,1);

while (1) begin

cdf = cdf + $exp(-pulse_shape_int[i]) * $pow(pulse_shape_int[i], k) / kfactorial;

if(cdf <= thres_cdf) begin

Tph Generator (4)
• 4. Given the SPAD’s PDP, a determination is made as to whether each photon’s

arrival instigates an avalanche
• If the derived k = 2, the comparison between thres_pdp and PDP is performed twice

• If the PDP criterion is met for the first time at the i-th datum of pulse_shape_int,

Tph = TOF + i × Tres (Tres: resolution time of pulse_shape_int)

//For considering PDP of the SPAD

thres_pdp = rand_uniform(0,1);

if(PDP > thres_pdp) begin

signal_sequence = i * Tres;

break;

end

k = k+1; kfactorial = kfactorial * k;

end

else break;

end

if(signal_sequence != 0) break;

end

if(signal_sequence != 0) Tph = TOF + signal_sequence;

end

endmodule

Dead Time Controller
• Compares noise_pulse and ph_pulse

• Outputs the final SPAD_pulse

SPAD-Based Sensor Modeling
• The overall block diagram of a SPAD-based sensor configured as a proximity sensor

• TDC_IN toggles whenever 64 SPADs
react

• TDC digitizes the timing of TDC_IN
toggles using PLL_CLK

• Using ripple counter method, up to
4095 measurements can be made

• Controller adjusts the overall
system operation timing

[T. Al Abbas, et al., 2018]

Testbench for a SPAD-Based Sensor Simulation

• PLL_CLK frequency: 600MHz
• TDC time resolution: 208 ps

• RMS jitter was set to 6 ps

• Timing Aligner
• rearranges the histogram

outputs (Count_clk0~7)
according to their actual
timing

• saves the outputs in
histogram_output

Timing Diagram of the SPAD-Based Sensor Modeling

• Light pulse cycle was set to 15 ns, including a reset timing of 1.66 ns
• The sensor can measure up to a distance of about 153 cm

• A total convergence time of 65 us is required to measure TOF 4095 times

Histogram Results
• Light pulse with a dispersed shape (7.5 ns width)

• Common inputs: TOF = 1.5 ns, PDP = 0.1, DCR = 0.01 counts/ns, Tdead = 10 ns

Histogram Results
• Light pulse with a dispersed shape (7.5 ns width)

• Common inputs: INT = 10 photons/pulse, PDP = 0.1, DCR = 0.01 counts/ns, Tdead = 10 ns

Histogram Results
• Light pulse with relatively sharp shape (3.6 ns width)

• Common inputs: INT = 1 photon/pulse, TOF = 1.5 ns, DCR = 0.01 counts/ns, Tdead = 5 ns

Histogram Results
• Light pulse with relatively sharp shape (3.6 ns width)

• Common inputs: INT = 1 photon/pulse, TOF = 1.5 ns, PDP = 0.1, Tdead = 5 ns

Summary
• This work demonstrated the feasibility of system-level simulation of SPAD-

based sensors in SystemVerilog using XMODEL primitives

• By utilizing the proposed statistical behavioral model of the SPAD, the
entire sensor system can be verified

• A 1.5-meter range proximity sensor completes its simulation in just 4.6
minutes, yielding 4095 histogram data points

Questions
• Thank you

	슬라이드 1: System-Level Simulation of a SPAD-Based Time-of-Flight Sensor in SystemVerilog
	슬라이드 2: Contents
	슬라이드 3: Direct Time-of-Flight Method
	슬라이드 4: A Direct TOF Sensor
	슬라이드 5: XMODEL: Accurate Simulation in SystemVerilog
	슬라이드 6: SPAD & AFE Operation
	슬라이드 7: SPAD Characteristics
	슬라이드 8: SPAD Modeling
	슬라이드 9: Noise Pulse Generator
	슬라이드 10: Tnoise Generator
	슬라이드 11: Tnoise Generator (2)
	슬라이드 12: Photon-induced Pulse Generator
	슬라이드 13: Tph Generator
	슬라이드 14: Tph Generator (2)
	슬라이드 15: Tph Generator (3)
	슬라이드 16: Tph Generator (4)
	슬라이드 17: Dead Time Controller
	슬라이드 18: SPAD-Based Sensor Modeling
	슬라이드 19: Testbench for a SPAD-Based Sensor Simulation
	슬라이드 20: Timing Diagram of the SPAD-Based Sensor Modeling
	슬라이드 21: Histogram Results
	슬라이드 22: Histogram Results
	슬라이드 23: Histogram Results
	슬라이드 24: Histogram Results
	슬라이드 25: Summary
	슬라이드 26: Questions

