
SysML v2
An overview with SysMD demonstration

Christoph Grimm, Axel Ratzke, Sebastian Post, Hagen Heermann, Johannes Koch
University of Kaiserslautern, Chair of Cyber-Physical Systems

Acknowledgements

Special thanks to SST for the open standard and its documentation
& Sanford Friedenthal and Ed Seidewitz for feedback and corrections.

The work was supported by German BMBF and EU within the projects

• Arrowhead Tools,

• GENIAL!, and

• KI4BoardNet.

Slide 2

Objectives of tutorial

1. Understand why, how, and for what to use SysML v2 in development
• Use cases

• Patterns / Anti patterns

2. Get overview of SysML v2 ecosystem, not only the language!
• Know about KerML, SysML v2 textual, Rest API

• Know about features for modeling tests and use cases

• Be able to create structural & parameterized model

3. Give impression of future Systems Engineering by example SysMD Notebook
• Support of MBSE by constraint propagation

• Integration in HW/SW development Verification & Validation processes

Slide 3

Why, why, why?

First known complex project reported by
literature [Genesis 11:1–9] is tower of Bable:

“… let’s confuse their language, so that they
may not understand one another's speech. …
and they left off building the city.”

Mutual understanding is key to complex,
heterogeneous systems.

Slide 4

Many “big” projects fail, in all domains incl. HW/SW

• Requirements, use cases, specification

• are incomplete, unknown,

• not well understood in beginning,

• change during development (or operation),

• have inconsistencies.

• Above issues are expensive to fix lately

• SysML v2 offers standardized solution

• US DoD might request SysML v2 models

Source: Chaos Report 2015

Why, why, why?

Slide 5

SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System
2. KerML, the Metamodel

3. SysML v2 textual

4. REST API for model exchange

5. Outlook

Slide 6

What is SysML?

SysML (“Systems Modeling Language”) is a
standard for Model-Based Systems Engineering

• Requirements

• Specification

• Use cases

• Test cases

NOT: “Design”, NOT “Behavioral modeling”
• But 1: use cases, verification use cases, … should use behavior

• But 2: exchange and versioning of data

Slide 7

Version 2 is not a simple “update” of v1.X …
• (Mostly) new, but not entirely different

SysML v2 standard includes

• KerML, a new meta-model

• SysML v2 diagrams

• SysML v2 textual modeling language

• SysML v2 REST API

What is SysML “v2”?

Slide 8

Some Use Cases and SysML v2 Features

Document
requirements

Specify
system

functions

Specify
system

structures

Analyze
requirements

Analyze
effect chains

Model use case
scenarios

& tests

SysML v2
Language

Structures
- Decomposition
- Interconnection
- Classification

Behaviors
- Function-based
- State-based
- Sequence-based
- Use cases

Requirements
- Documentation
- Annotation

Expressions
- Constraints
- Assertions

Slide 9

Elements of the SysML v2 eco-system

1. KerML, Kernel modeling language
• Basic, generic model elements from which all models are built
→ Interoperability, extensibility

2. SysML v2, based on KerML
• SysML v2 Diagrams

• SysML v2 Textual notation

3. API
• Exchange of KerML Elements e.g. REST API, OSLC

Slide 10

The SysML v2 Eco-System (a vision)

Persistence &
version management

(KerML instances)

SysML v2
Textual

SysML v2
Diagrams

Domain-Specific
Languages, …

Tools, …
R

ES
T

A
P

I

Various CAD Tools
From different vendors

Ke
rM

L
En

ti
ti

es

REST API
Documentation
Semantic web
Data sheets

REST API

KerML EntitiesKerML Entities

Slide 11

The SysML v2 Eco-System (a vision)

Persistence &
version management

(KerML instances)

SysML v2
Textual

SysML v2
Diagrams

Domain-Specific
Languages, …

Tools, …
R

ES
T

A
P

I

Various CAD Tools
from different vendors

Ke
rM

L
En

ti
ti

es

REST API
Documentation
Semantic web
Data sheets

REST API

KerML EntitiesKerML Entities

Alice gets
requirements & docs …

Bob creates
a spec model & tests

Charles develops ASIC

Daniel designs
housing

Slide 12

Three Patterns/Anti-Patterns …

Anti-Pattern (at spec-level)

• Non-specific natural language in documents
• “enough”, “more”, “better”; “as in last project”

• Create only models, or separate from docs
• Excludes many stakeholders

• Leads to inconsistencies doc vs. model

• Start “design” by creating behavioral models
• Reduces solution space for domain experts

• Creates wasted time for not-needed modeling

Better
• Derive concrete parameters for performances

• X is at least 50, “y more than 60”, “z must be 20”

• Link documents with models
• Single source of truth for all

• Describe test-cases & use cases by behavior
• Generate skeletons for domain-specific tools

• Round-trip for parameters

Slide 13

SysML v2 tools

• SysML v2 reference implementation (Java)
https://github.com/Systems-Modeling/SysML-v2-Release
• Good for trying and learning SysML v2: reference, comprehensive

• SysMD Notebook (Kotlin)
• Integration MD documents, tables, … & Model

• Constraint propagation permits analysis and consistency checking

• Be aware of limitations: much of KerML + little of SysML + built-in profile for ranges

… and a number of vendors likely working on commercial tools

Slide 14

https://github.com/Systems-Modeling/SysML-v2-Release

SysMD in HW/SW System Design

• Get requirements

• Analyze, create spec
System

• Get spec

• Analyze, create HW, SW, … specs
Architecture

• Get spec HW, Design …

• Get spec SW, Code …

• Get spec Circuits, Design …

Components

Continuous Consistency
Checking

Characterization

Characterization

Slide 15

SysMD Demonstration 1: SystemC Roundtrip

• Overview Documentation (MD, Latex) + Model integration

• SystemC Code generation

• Roundtrip after characterization

Slide 16

SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel
3. SysML v2 textual

4. REST API for model exchange

5. Outlook

Slide 17

SysML v2 Language Architecture

Layer Adds Classes added

KerML Root Syntactic structure Element, Relationship, Namespace, Annotation,
Membership, …

KerML Core Semantic by logic Type, Feature, Multiplicity, …

KerML Kernel Semantic library Class, Datatype, Expression, Package, Association,
Connector, Behavior, …

SysML v2 Domain-specific library Part, Attribute, Port, Interface, Connection, Constraint,
Assertion, Requirement, Variation, View, …

• KerML (and SysML v2) Models represented & exchanged by instances of these classes (e.g. XML, JSON, …)
• Also, concrete (textual) notations: human user-friendly
• Based on KerML, other DSL can be developed i.e. targeting tool interoperability & model exchange!

Slide 18

KerML Textual: Literals

Names

• Start with letter or _, then letters or numbers: name1, _123

• Unrestricted names: ‘This is a valid name‘ (no backslash, no single quote in name)

Qualified names

• Give path from an Element to another Element (name):
Inside ScalarValues, the Element with name Real: ScalarValues::Real

Number; Boolean literals; Strings

• 12.0 e -10; true, false; “this is a string”

Slide 19

dependency d from t1 to n1;
type <t1> ‘type no.1’;
namespace <n1> namespace1;

Elements & Relationships

Element (common base class)
• elementId (UUID; unique for all commits)

• declaredName

• declaredShortName

• owner Identifications

• ownedElement Identifications

Relationship (for all relations)
• source Identifications

• target Identifications

• at least two related elements

• not necessarily directed; both related
elements can be source or target

Read more in:
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

Slide 20

https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

KerML Classes
Overview
(Elements)

Tutorial coverage

Figure: Kernel modeling language (KerML) v1.0 Beta 1
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

Slide 21

https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

KerML Classes
Overview
(Relationships)

Tutorial coverage

Figure: Kernel modeling language (KerML) v1.0 Beta 1
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

Slide 22

https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf

Ownership (general)

• Curly braces ~ ownership hierarchy
• All elements are owned by other

element except “root namespace”.
• Some elements imply additional ones.
• Owned elements are deleted if

owner is deleted.

Root namespace

Namespace a;

Feature b; Class c;

OwningMembership
(:> Relationship)

(no name)

(no owner)
Documentation d;

(no owner)

namespace a {

feature b;

class c;

}

doc d;

Slide 23

Package, Import

Package (and Namespace & subclasses thereof)

• structures model hierarchically,

• permits lookup of elements by its (short)name
(“name resolution”),

• can import of other elements or namespaces,

• visibility of elements in a namespace can be
restricted by public, private, protected.

public package p2 {

class c2;

}

package p {

class c {

// Without import:

// feature f : p2::c2;
import p2::*;

// or: import p2::c2;
feature f: c2;

}

}

Slide 24

Classifiers (DataType, Class)

Classifier models similarities between abstract
sets of things or data.

• The most general Classifier is Anything.

• Classifiers own Relationship Specialization
between general and specific class.

• The specific class inherits public and private
memberships from general class.

• Shortcut for specializes: “:>”

→ Read more on type-relationships!
• Conjugation, Disjoining, …

class Vehicle specializes Base::Anything {

feature wheels: Wheels;

feature engine: Engine [0 .. 1];

}

class Car specializes Vehicle {

// inherits wheels, engine

}

Slide 25

Features

Feature is typed by classifier; describes things
and how they are related:

• In classifiers (“class featuring”):
which things do all things of a class “have”?

• else:
decomposition of a thing into things.

• Furthermore, features

• may be redefined.

• can be subsets of other features.

• Have direction: in, out, inout.

• Be abstract, composite, portion, …

// Common features of all Vehicles

class Vehicle specializes base::Anything {

feature wheels: Wheels [2 .. *];

feature engine: Engine [0 .. 1];

}

// Features of a concrete vehicle

feature myCar: Vehicle {

feature redefines wheels: Wheels[4];

feature frontWheels subsets wheels;

}

Slide 26

Association, Connector

Associations classify relationships by giving
source and/or target classes, by end features:

Connectors represent concrete relationships,
typed by an Association

assoc Wire { // BinaryLink by default

// source type & name

end feature startOfWire: Device;
// target type & name

end feature endOfWire: Device;

}

feature sensor1: Device;

feature controller1: Device;

connector wire1: Wire

from sensor1

to controller1;

Slide 27

Function, Expression

Functions model abstract dependencies
between values

• Cannot be evaluated

Expressions model a concrete dependency
between input and output values, typed by a
function.

• Can be evaluated if dependent variables are
bound to a literal value

function AreaComputation {

import ScalarValues::*;

in w: Real;

in l: Real;

return area: Real = w*l;

}

feature w1: ScalarValues::Real;
feature l1: ScalarValues::Real;

expr areaW1L1: AreaComputation {

in w; in l; return area;

}

Slide 28

SysMD Notebook & Solver

SysMD Notebook extends the ability of KerML/SysML v2 to “execute” models

• Computation on symbolic or abstract values instead of concrete values

• No need to have literal values, instead:
• Boolean values: 4-Valued logic: unknown, true, false, infeasible

• Real values: Ranges: Real = [*], [‘lower bound’ .. ‘upper bound’], Empty (no Real)

• Integer values: Integer ranges, likewise

Slide 29

Live Demonstration 2: SysMD Solver

• Solver on Reals with invariants
• Simple example: Box with constrained sides and volume and Units

• Solver on Booleans and mixed Boolean/Real
• Simple example: Satisfiable, Unsatisfiable Boolean combinations

• Simple example: Predicates with Real inequations & (Un-)Satisfiable inequations

• Mass roll up in vehicle (bottom-up, top-down, multiplicities)

Slide 30

SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual
4. REST API for model exchange

5. Outlook

Slide 31

SysML v2 Language Architecture

Layer Adds Classes added

KerML Root Syntactic structure Element, Relationship, Namespace, Annotation,
Membership, …

KerML Core Semantic by logic Type, Feature, Multiplicity, …

KerML Kernel Semantic library Class, Datatype, Expression, Package, Association,
Connector, Behavior, …

SysML v2 Domain-specific library Part, Attributes, Ports, Requirement, Constraint,
Assertion, Usages, Connection, Views, …

• KerML (and SysML v2) models represented & exchanged by instances of these classes (e.g. XML, JSON, …)
• Also, concrete (textual) notations: human user-friendly
• Based on KerML, other DSL can be developed i.e. targeting tool interoperability & model exchange!

Slide 32

Part Definition, Part Usage

Part definition creates a class of parts.

Part usage creates a feature.

Part references create a reference to a feature
that exists independently from the part.

part def Vehicle {

attribute mass: ISQ: Mass;

part wheels: Wheel [1 .. *];

ref part driver: Person;

}
part def Car :> Vehicle;

part myVehicle: Car {
attribute redefines
mass: ISQ::Mass = 100 [kg];

}

Slide 33

Attribute Definition & Usage

Attribute definition defines a DataType that can
be used to model systems.

Attribute is a kind of Feature typed by a
DataType.

• Can be bound to an expression

• Expression can be computed for e.g. analysis

attribute def position {

attribute x: ISQ::Length;

attribute y: ISQ::Length;

attribute z: ISQ::Length;

}

part def Car {

attribute mass: ISQ: Mass
= 10.0 * wheels.mass;

part wheels: Wheel [4];

ref part driver: Person;

}

Slide 34

Constraints & Assertions (Both: Usage & Definition)

Constraint is a kind of Boolean expression that
can be satisfied or not.

• E.g. some performance we like to have,
but that is not guaranteed to be satisfied.

• Note: Definition also possible.

Assertion is a kind of invariant that is always
satisfied.

• E.g. a natural law, very hard constraint.

• Assertions can also specify systems of
(e.g. DAE or in-) equations.

• Note: Definition also possible.

part vehicle: Vehicle;

constraint enoughPower {

vehicle.power > 500.0 [SI::kW]

}

assert constraint maxMass {
vehicle.mass < 200.0 [SI::t]

}
// TimeOf(…), Duriation(…)

// for time constraints in behavior

Slide 35

Requirement Definition & Usage

Requirement definition introduces a class of
constraint definitions, and can have e.g.

• doc, attributes, features

• subject; a feature about which and in whose
scope the requirement is formulated

• assume constraint

• require constraint

Requirement models a concrete requirement.

→Learn more: Requirements can be

• Grouped and structured

• Satisfied by parts to link requirements and design

requirement def Slewrate {

doc /* Max rate of change */

subject opAmp: OpAmp;

attribute minRate: Quantity[V/ms];

require constraint {

opAmp.slewrate >= minSlewrate

}

}

requirement slewrate: Slewrate {

attribute redefine minRate=10 [V/ms];

}

Slide 36

Ports, Interfaces

Port (Def) models feature via which a part
(definition) makes some of its features available

• Direction of features: in, out, inout

• Referential features!

Interface (Def) models connection between
ports

• Can have hierarchy
→ ~ SystemC hierarchical Channels

part CPU {

port clk: Bit {
attribute fmax: Quantity = 1.0 [GHz];

}

}

interface clk: Bit

connect CPU.clk to ClkGen.clk;

Slide 37

Behavior (State Machines, …)

Comprehensive set of options to model
behavior and synchronization

• State machines

• entry, state

• accept … then ..

• Hierarchy, also parallel

• Guard & Effect actions

• …

• Clocks, Timing constraints

→ Interaction (~sequence diagrams)

→ (too much for brief tutorial)

state def VehicleStates;

state vehicleStates: VehicleStates {

entry; then off;

state off;

accept VehicleStartSignal then starting;

state starting;

accept VehicleOnSignal then on;

state on;

accept VehicleOffSignal then off;

}

Slide 38

Demonstration 3 - Domain vs. Zonal Architecture

Model of distributed in-car network

• Processors, cable tree, sensors

• Mapping of SW Features to Processors

• Analysis of cable length, cost and weight

• Analysis of performance bottlenecks

• Latencies

• Data rates

Slide 39

SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual

4. REST API for model exchange
5. Demonstration SysMD Notebook

6. Outlook

Slide 40

The SysML v2 Eco-System (a vision; reminder)

Persistance &
version management

(KerML instances)

SysML v2
Textual

SysML v2
Diagrams

Domain-Specific
Languages, …

Tools, …
R

ES
T

A
P

I

Various CAD Tools
From different vendors

Ke
rM

L
En

ti
ti

es

REST API
Documentation
Semantic web
Data sheets

REST API

KerML EntitiesKerML Entities

Slide 41

JSON

JavaScript Object Notation (JSON)

• Format for exchange of data across platforms

• Commonly used in internet to represent
serialized data

• Schema defines structure & fields

• SysML v2 std. gives Schema for exchange

Server:
KerML objects

in databaseR
ES

T
A

P
IKerML Entities

in JSON formatSysML
v2

KerML

Compiler (De-)Serialization
[

{

"@type": "Package",

"@elementId": "54947df8-0e9e-4471-a2f9-9af509fb5889",

"name": "myPackage",

"owner": "13447df8-0145-a451-b2fg-9bf50dfb5784",

…

} …

]

UUID 4 or 5 (std. libraries)

Slide 42

REST API

SysML v2 std. gives API for different platforms
and platform-independent

• Popular platform: REST API (→ Cloud)

Endpoints are URL via which data in e.g. JSON
format can be exchanged

https://mycompany.com/specs/projects/$ID

Operations with URL

• POST – transfer new, complete element

• PUT – transfer complete existing element

• PATCH – transfer changed fields of element

• GET – get an element

• DELETE – delete an element

Server:
KerML objects

in databaseR
ES

T
A

P
IKerML Entities

in JSON formatSysML
v2

KerML

Compiler (De-)Serialization

Slide 43

SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Element Endpoints

Marked operation gets all elements of a SysML v2 repository in JSON format (see above!)

• projectId identifies a project – e.g. by GET /projects

• commitId identifies a commit – e.g. by GET /projects/$ID/commits

44

Operations Endpoint

GET /projects/<projectId>/commits/ <commitId>/elements

GET /projects/<projectId>/commits/ <commitId>/elements/<elementId>

GET /projects/<projectId>/commits/ <commitId>/elements/<elementId>/relationships

GET /projects/<projectId>/commits/ <commitId>/roots

Slide 44

SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Project Endpoints

Commit Endpoints

45

Operations Endpoint

POST, GET /projects

GET, PUT, DELETE /projects/<projectId>

Operations Endpoint

POST, GET /projects/<projectId>/commits

GET /projects/<projectId>/commits/<commitId>

GET /projects/<projectId>/commits/<commitId>/changes

GET /projects/<projectId>/commits/<commitId>/changes/<changeId>

Slide 45

SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Branch Endpoints

Tag Endpoints

46

Operations Endpoint

POST, GET /projects/<projectId>/branches

GET, DELETE /projects/<projectId>/branches/<branchId>

Operations Endpoint

POST, GET /projects/<projectId>/tags

GET, DELETE /projects/<projectId>/tags/<tagId>

Slide 46

SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual

4. REST API for model exchange

5. Outlook

Slide 47

Summary

SysML v2 is not just an “update” for SysML

• SysML v2 – includes also textual language

• SysML v2 brings a comprehensive ecosystem beyond the modelling language

• KerML – also basis for exchange and collaboration across tools and domains

• REST API – allows us to use single source of truth with versioning in the cloud

• Too much has not been shown in too short tutorial

• Denotational semantics with formal foundations

• Get more information and details from GITHUB (link: see last slide)

Slide 48

Outlook

• Many tool vendors work on adaption of tools

• SysMD Notebook as demonstrated will be open-source

• Small, but growing supported subset

• Deeper integration of Documents and Models

• Improvement of solver and its integration with KerML

• I wonder, what LLM can do with Documentation + linked SysML v2 model ☺

Slide 49

References & Resources

Github repository of SysML v2 Submission Team (SST)

https://github.com/Systems-Modeling/SysML-v2-Release

In “doc”

• Comprehensive introduction to SysML v2 Diagrams

• Comprehensive introduction to SysML v2 Textual

• Detailed documents for KerML, SysMLv2 and API

Google group:

https://groups.google.com/g/sysml-v2-release?pli=1

Slide 50

https://github.com/Systems-Modeling/SysML-v2-Release
https://groups.google.com/g/sysml-v2-release?pli=1

Feel free to ask your question

Thank you
cgrimm@rptu.de

Slide 51

	Folie 1: SysML v2 An overview with SysMD demonstration
	Folie 2: Acknowledgements
	Folie 3: Objectives of tutorial
	Folie 4: Why, why, why?
	Folie 5
	Folie 6: SysML v2: An Overview with Demonstration
	Folie 7: What is SysML?
	Folie 8: What is SysML “v2”?
	Folie 9: Some Use Cases and SysML v2 Features
	Folie 10: Elements of the SysML v2 eco-system
	Folie 11: The SysML v2 Eco-System (a vision)
	Folie 12: The SysML v2 Eco-System (a vision)
	Folie 13: Three Patterns/Anti-Patterns …
	Folie 14: SysML v2 tools
	Folie 15: SysMD in HW/SW System Design
	Folie 16: SysMD Demonstration 1: SystemC Roundtrip
	Folie 17: SysML v2: An Overview with Demonstration
	Folie 18: SysML v2 Language Architecture
	Folie 19: KerML Textual: Literals
	Folie 20: Elements & Relationships
	Folie 21: KerML Classes Overview (Elements)
	Folie 22: KerML Classes Overview (Relationships)
	Folie 23: Ownership (general)
	Folie 24: Package, Import
	Folie 25: Classifiers (DataType, Class)
	Folie 26: Features
	Folie 27: Association, Connector
	Folie 28: Function, Expression
	Folie 29: SysMD Notebook & Solver
	Folie 30: Live Demonstration 2: SysMD Solver
	Folie 31: SysML v2: An Overview with Demonstration
	Folie 32: SysML v2 Language Architecture
	Folie 33: Part Definition, Part Usage
	Folie 34: Attribute Definition & Usage
	Folie 35: Constraints & Assertions (Both: Usage & Definition)
	Folie 36: Requirement Definition & Usage
	Folie 37: Ports, Interfaces
	Folie 38: Behavior (State Machines, …)
	Folie 39: Demonstration 3 - Domain vs. Zonal Architecture
	Folie 40: SysML v2: An Overview with Demonstration
	Folie 41: The SysML v2 Eco-System (a vision; reminder)
	Folie 42: JSON
	Folie 43: REST API
	Folie 44: SysML v2 Version Management API Services (Platform Specific Model (PSM))
	Folie 45: SysML v2 Version Management API Services (Platform Specific Model (PSM))
	Folie 46: SysML v2 Version Management API Services (Platform Specific Model (PSM))
	Folie 47: SysML v2: An Overview with Demonstration
	Folie 48: Summary
	Folie 49: Outlook
	Folie 50: References & Resources
	Folie 51: Feel free to ask your question

