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Objectives of tutorial

1. Understand why, how, and for what to use SysML v2 in development
• Use cases

• Patterns / Anti patterns

2. Get overview of SysML v2 ecosystem, not only the language!
• Know about KerML, SysML v2 textual, Rest API

• Know about features for modeling tests and use cases

• Be able to create structural & parameterized model

3. Give impression of future Systems Engineering by example SysMD Notebook
• Support of MBSE by constraint propagation 

• Integration in HW/SW development Verification & Validation processes
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Why, why, why?

First known complex project reported by 
literature [Genesis 11:1–9] is tower of Bable: 

“… let’s confuse their language, so that they 
may not understand one another's speech. … 
and they left off building the city.”

Mutual understanding is key to complex, 
heterogeneous systems.
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Many “big” projects fail, in all domains incl. HW/SW

• Requirements, use cases, specification

• are incomplete, unknown,

• not well understood in beginning,

• change during development (or operation), 

• have inconsistencies. 

• Above issues are expensive to fix lately 

• SysML v2 offers standardized solution

• US DoD might request SysML v2 models

Source: Chaos Report 2015

Why, why, why?
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SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System
2. KerML, the Metamodel

3. SysML v2 textual 

4. REST API for model exchange

5. Outlook
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What is SysML? 

SysML (“Systems Modeling Language”) is a 
standard for Model-Based Systems Engineering

• Requirements

• Specification

• Use cases

• Test cases

NOT: “Design”, NOT “Behavioral modeling”
• But 1: use cases, verification use cases, … should use behavior

• But 2: exchange and versioning of data 
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Version 2 is not a simple “update” of v1.X …  
• (Mostly) new, but not entirely different

SysML v2 standard includes

• KerML, a new meta-model 

• SysML v2 diagrams 

• SysML v2 textual modeling language 

• SysML v2 REST API

What is SysML “v2”? 
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Some Use Cases and SysML v2 Features 

Document 
requirements

Specify 
system 

functions

Specify
system 

structures 

Analyze 
requirements 

Analyze 
effect chains

Model use case 
scenarios 

& tests

SysML v2
Language

Structures
- Decomposition
- Interconnection
- Classification

Behaviors
- Function-based
- State-based
- Sequence-based
- Use cases

Requirements
- Documentation
- Annotation

Expressions
- Constraints
- Assertions
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Elements of the SysML v2 eco-system

1. KerML, Kernel modeling language
• Basic, generic model elements from which all models are built
→ Interoperability, extensibility 

2. SysML v2, based on KerML
• SysML v2 Diagrams

• SysML v2 Textual notation

3. API
• Exchange of KerML Elements e.g. REST API, OSLC
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The SysML v2 Eco-System (a vision)

Persistence & 
version management 

(KerML instances)

SysML v2
Textual

SysML v2
Diagrams 

Domain-Specific
Languages, …
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R

ES
T 

A
P

I

Various CAD Tools
From different vendors
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L 
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ti
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es

REST API
Documentation
Semantic web
Data sheets

REST API

KerML EntitiesKerML Entities
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The SysML v2 Eco-System (a vision)

Persistence & 
version management 

(KerML instances)

SysML v2
Textual
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Domain-Specific
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REST API
Documentation
Semantic web
Data sheets

REST API

KerML EntitiesKerML Entities

Alice gets
requirements & docs … 

Bob creates 
a spec model & tests

Charles develops ASIC

Daniel designs
housing
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Three Patterns/Anti-Patterns … 

Anti-Pattern (at spec-level) 

• Non-specific natural language in documents
• “enough”, “more”, “better”; “as in last project”

• Create only models, or separate from docs
• Excludes many stakeholders

• Leads to inconsistencies doc vs. model

• Start “design” by creating behavioral models
• Reduces solution space for domain experts

• Creates wasted time for not-needed modeling

Better 
• Derive  concrete parameters for performances 

• X is at least 50, “y more than 60”, “z must be 20”

• Link documents with models
• Single source of truth for all 

• Describe test-cases & use cases by behavior
• Generate skeletons for domain-specific tools 

• Round-trip for parameters
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SysML v2 tools

• SysML v2 reference implementation (Java)
https://github.com/Systems-Modeling/SysML-v2-Release
• Good for trying and learning SysML v2: reference, comprehensive

• SysMD Notebook (Kotlin)
• Integration MD documents, tables, … & Model

• Constraint propagation permits analysis and consistency checking

• Be aware of limitations: much of KerML + little of SysML + built-in profile for ranges

… and a number of vendors likely working on commercial tools 
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SysMD in HW/SW System Design

• Get requirements

• Analyze, create spec
System

• Get spec

• Analyze, create HW, SW, … specs
Architecture

• Get spec HW, Design … 

• Get spec SW, Code … 

• Get spec Circuits, Design … 

Components

Continuous Consistency
Checking

Characterization

Characterization
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SysMD Demonstration 1: SystemC Roundtrip

• Overview Documentation (MD, Latex) + Model integration

• SystemC Code generation

• Roundtrip after characterization
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SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel
3. SysML v2 textual 

4. REST API for model exchange

5. Outlook
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SysML v2 Language Architecture 

Layer Adds Classes added

KerML Root Syntactic structure Element, Relationship, Namespace, Annotation, 
Membership, …

KerML Core Semantic by logic Type, Feature, Multiplicity, …

KerML Kernel Semantic library Class, Datatype, Expression, Package, Association, 
Connector, Behavior, …

SysML v2 Domain-specific library Part, Attribute, Port, Interface, Connection, Constraint, 
Assertion, Requirement, Variation, View, …  

• KerML (and SysML v2) Models represented & exchanged by instances of these classes (e.g. XML, JSON, …)
• Also, concrete (textual) notations: human user-friendly
• Based on KerML, other DSL can be developed i.e. targeting tool interoperability & model exchange!
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KerML Textual: Literals

Names

• Start with letter or _, then letters or numbers:  name1, _123

• Unrestricted names:  ‘This is a valid name‘ (no backslash, no single quote in name)

Qualified names

• Give path from an Element to another Element (name): 
Inside  ScalarValues, the Element with name Real:  ScalarValues::Real

Number;  Boolean literals;  Strings

• 12.0 e -10; true, false; “this is a string”
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dependency d from t1 to n1; 
type <t1> ‘type no.1’;
namespace <n1> namespace1;

Elements & Relationships

Element (common base class)
• elementId (UUID; unique for all commits)

• declaredName

• declaredShortName

• owner Identifications

• ownedElement Identifications

Relationship (for all relations)
• source Identifications

• target Identifications

• at least two related elements

• not necessarily directed; both related 
elements can be source or target

Read more in:
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf
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KerML Classes
Overview
(Elements)

Tutorial coverage

Figure: Kernel modeling language (KerML) v1.0 Beta 1
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf
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KerML Classes
Overview 
(Relationships)

Tutorial coverage

Figure: Kernel modeling language (KerML) v1.0 Beta 1
https://github.com/Systems-Modeling/SysML-v2-Release/blob/master/doc/1-Kernel_Modeling_Language.pdf
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Ownership (general)

• Curly braces ~ ownership hierarchy
• All elements are owned by other 

element except “root namespace”. 
• Some elements imply additional ones.
• Owned elements are deleted if 

owner is deleted.

Root namespace

Namespace a;

Feature b; Class c; 

OwningMembership
(:> Relationship)

(no name)

(no owner)
Documentation d;

(no owner)

namespace a { 

feature b; 

class c; 

}

doc d; 
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Package, Import

Package (and Namespace & subclasses thereof) 

• structures model hierarchically,

• permits lookup of elements by its (short)name
(“name resolution”),

• can import of other elements or namespaces,

• visibility of elements in a namespace can be 
restricted by public, private, protected.

public package p2 {

class c2; 

}

package p {

class c {

// Without import: 

// feature f : p2::c2;
import p2::*;

// or: import p2::c2; 
feature f: c2; 

}

}
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Classifiers (DataType, Class)

Classifier models similarities between abstract 
sets of things or data. 

• The most general Classifier is Anything.

• Classifiers own Relationship Specialization
between general and specific class.

• The specific class inherits public and private
memberships from general class. 

• Shortcut for specializes: “:>”

→ Read more on type-relationships!
• Conjugation, Disjoining, …

class Vehicle specializes Base::Anything { 

feature wheels: Wheels;

feature engine: Engine [0 .. 1]; 

}

class Car specializes Vehicle {

// inherits wheels, engine

}
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Features

Feature is typed by classifier; describes things
and how they are related: 

• In classifiers (“class featuring”): 
which things do all things of a class “have”?

• else:
decomposition of a thing into things.

• Furthermore, features 

• may be redefined.

• can be subsets of other features. 

• Have direction: in, out, inout.

• Be abstract, composite, portion, … 

// Common features of all Vehicles

class Vehicle specializes base::Anything { 

feature wheels: Wheels [2 .. *];

feature engine: Engine [0 .. 1]; 

}

// Features of a concrete vehicle

feature myCar: Vehicle {

feature redefines wheels: Wheels[4];

feature frontWheels subsets wheels; 

}
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Association, Connector

Associations classify relationships by giving 
source and/or target classes, by end features: 

Connectors represent concrete relationships, 
typed by an Association

assoc Wire { // BinaryLink by default

// source type & name 

end feature startOfWire: Device;
// target type & name

end feature endOfWire: Device; 

}

feature sensor1: Device; 

feature controller1: Device; 

connector wire1: Wire 

from sensor1

to controller1; 
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Function, Expression

Functions model abstract dependencies 
between values

• Cannot be evaluated

Expressions model a concrete dependency 
between input and output values, typed by a 
function. 

• Can be evaluated if dependent variables are 
bound to a literal value

function AreaComputation {

import ScalarValues::*; 

in w: Real; 

in l: Real; 

return area: Real = w*l; 

}

feature w1: ScalarValues::Real; 
feature l1: ScalarValues::Real; 

expr areaW1L1: AreaComputation {

in w; in l; return area;  

}
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SysMD Notebook & Solver

SysMD Notebook extends the ability of KerML/SysML v2 to “execute” models

• Computation on symbolic or abstract values instead of concrete values

• No need to have literal values, instead:
• Boolean values: 4-Valued logic: unknown, true, false, infeasible

• Real values: Ranges: Real = [*], [‘lower bound’ .. ‘upper bound’], Empty (no Real)

• Integer values: Integer ranges, likewise
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Live Demonstration 2: SysMD Solver

• Solver on Reals with invariants
• Simple example: Box with constrained sides and volume and Units

• Solver on Booleans and mixed Boolean/Real
• Simple example: Satisfiable, Unsatisfiable Boolean combinations

• Simple example: Predicates with Real inequations & (Un-)Satisfiable inequations

• Mass roll up in vehicle (bottom-up, top-down, multiplicities)
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SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual 
4. REST API for model exchange

5. Outlook
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SysML v2 Language Architecture 

Layer Adds Classes added

KerML Root Syntactic structure Element, Relationship, Namespace, Annotation, 
Membership, …

KerML Core Semantic by logic Type, Feature, Multiplicity, …

KerML Kernel Semantic library Class, Datatype, Expression, Package, Association, 
Connector, Behavior, …

SysML v2 Domain-specific library Part, Attributes, Ports, Requirement, Constraint, 
Assertion, Usages, Connection, Views, …  

• KerML (and SysML v2) models represented & exchanged by instances of these classes (e.g. XML, JSON, …)
• Also, concrete (textual) notations: human user-friendly
• Based on KerML, other DSL can be developed i.e. targeting tool interoperability & model exchange!

Slide 32



Part Definition, Part Usage

Part definition creates a class of parts.

Part usage creates a feature. 

Part references create a reference to a feature 
that exists independently from the part. 

part def Vehicle {

attribute mass: ISQ: Mass; 

part wheels: Wheel [1 .. *];

ref part driver: Person; 

}
part def Car :> Vehicle; 

part myVehicle: Car {
attribute redefines 
mass: ISQ::Mass = 100 [kg];

}
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Attribute Definition & Usage

Attribute definition defines a DataType that can 
be used to model systems. 

Attribute is a kind of Feature typed by a 
DataType.

• Can be bound to an expression 

• Expression can be computed for e.g. analysis

attribute def position {

attribute x: ISQ::Length; 

attribute y: ISQ::Length; 

attribute z: ISQ::Length; 

}

part def Car {

attribute mass: ISQ: Mass 
= 10.0 * wheels.mass; 

part wheels: Wheel [4];

ref part driver: Person; 

}

Slide 34



Constraints & Assertions (Both: Usage & Definition)

Constraint is a kind of Boolean expression that 
can be satisfied or not. 

• E.g. some performance we like to have,
but that is not guaranteed to be satisfied. 

• Note: Definition also possible. 

Assertion is a kind of invariant that is always 
satisfied.

• E.g. a natural law, very hard constraint.

• Assertions can also specify systems of 
(e.g. DAE or in-) equations.  

• Note: Definition also possible.

part vehicle: Vehicle;  

constraint enoughPower {

vehicle.power > 500.0 [SI::kW] 

}

assert constraint maxMass {
vehicle.mass < 200.0 [SI::t] 

}
// TimeOf(…), Duriation(…) 

// for time constraints in behavior
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Requirement Definition & Usage

Requirement definition introduces a class of 
constraint definitions, and can have e.g. 

• doc, attributes, features 

• subject; a feature about which and in whose 
scope the requirement is formulated

• assume constraint

• require constraint 

Requirement models a concrete requirement.

→Learn more: Requirements can be 

• Grouped and structured

• Satisfied by parts to link requirements and design

requirement def Slewrate {

doc /* Max rate of change */  

subject opAmp: OpAmp;

attribute minRate: Quantity[V/ms]; 

require constraint {

opAmp.slewrate >= minSlewrate

} 

}

requirement slewrate: Slewrate {

attribute redefine minRate=10 [V/ms]; 

}
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Ports, Interfaces

Port (Def) models feature via which a part 
(definition) makes some of its features available

• Direction of features: in, out, inout

• Referential features! 

Interface (Def) models connection between 
ports

• Can have hierarchy 
→ ~ SystemC hierarchical Channels

part CPU {

port clk: Bit {
attribute fmax: Quantity = 1.0 [GHz];  

}

}

interface clk: Bit 

connect CPU.clk to ClkGen.clk;   
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Behavior (State Machines, …)

Comprehensive set of options to model 
behavior and synchronization

• State machines

• entry, state

• accept … then .. 

• Hierarchy, also parallel

• Guard & Effect actions

• … 

• Clocks, Timing constraints

→ Interaction (~sequence diagrams)

→ (too much for brief tutorial)

state def VehicleStates; 

state vehicleStates: VehicleStates {

entry; then off; 

state off; 

accept VehicleStartSignal then starting; 

state starting; 

accept VehicleOnSignal then on; 

state on; 

accept VehicleOffSignal then off; 

}
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Demonstration 3 - Domain vs. Zonal Architecture

Model of distributed in-car network

• Processors, cable tree, sensors

• Mapping of SW Features to Processors

• Analysis of cable length, cost and weight

• Analysis of performance bottlenecks

• Latencies

• Data rates
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SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual 

4. REST API for model exchange
5. Demonstration SysMD Notebook

6. Outlook
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The SysML v2 Eco-System (a vision; reminder)

Persistance & 
version management 

(KerML instances)

SysML v2
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REST API

KerML EntitiesKerML Entities
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JSON

JavaScript Object Notation (JSON)

• Format for exchange of data across platforms

• Commonly used in internet to represent 
serialized data

• Schema defines structure & fields

• SysML v2 std. gives Schema for exchange

Server: 
KerML objects

in databaseR
ES

T 
A

P
IKerML Entities

in JSON formatSysML 
v2

KerML

Compiler (De-)Serialization
[

{

"@type": "Package",

"@elementId": "54947df8-0e9e-4471-a2f9-9af509fb5889",

"name": "myPackage",

"owner": "13447df8-0145-a451-b2fg-9bf50dfb5784",

…

} …

]

UUID 4 or 5 (std. libraries)
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REST API 

SysML v2 std. gives API for different platforms 
and platform-independent

• Popular platform: REST API (→ Cloud)

Endpoints are URL via which data in e.g. JSON 
format can be exchanged

https://mycompany.com/specs/projects/$ID

Operations with URL

• POST – transfer new, complete element 

• PUT – transfer complete existing element

• PATCH – transfer changed fields of element 

• GET – get an element

• DELETE – delete an element

Server: 
KerML objects

in databaseR
ES

T 
A

P
IKerML Entities

in JSON formatSysML 
v2

KerML

Compiler (De-)Serialization
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SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Element Endpoints

Marked operation gets all elements of a SysML v2 repository in JSON format (see above!)

• projectId identifies a project – e.g. by GET /projects 

• commitId identifies a commit – e.g. by GET /projects/$ID/commits 

44

Operations Endpoint

GET /projects/<projectId>/commits/ <commitId>/elements 

GET /projects/<projectId>/commits/ <commitId>/elements/<elementId> 

GET /projects/<projectId>/commits/ <commitId>/elements/<elementId>/relationships

GET /projects/<projectId>/commits/ <commitId>/roots
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SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Project Endpoints

Commit Endpoints

45

Operations Endpoint

POST, GET /projects

GET, PUT, DELETE /projects/<projectId>

Operations Endpoint

POST, GET /projects/<projectId>/commits

GET /projects/<projectId>/commits/<commitId>

GET /projects/<projectId>/commits/<commitId>/changes

GET /projects/<projectId>/commits/<commitId>/changes/<changeId>
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SysML v2 Version Management API Services
(Platform Specific Model (PSM))

Branch Endpoints

Tag Endpoints

46

Operations Endpoint

POST, GET /projects/<projectId>/branches

GET, DELETE /projects/<projectId>/branches/<branchId>

Operations Endpoint

POST, GET /projects/<projectId>/tags

GET, DELETE /projects/<projectId>/tags/<tagId>
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SysML v2: An Overview with Demonstration

1. The SysML v2 Eco-System

2. KerML, the Metamodel

3. SysML v2 textual 

4. REST API for model exchange

5. Outlook
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Summary

SysML v2 is not just an “update” for SysML

• SysML v2 – includes also textual language  

• SysML v2 brings a comprehensive ecosystem beyond the modelling language

• KerML – also basis for exchange and collaboration across tools and domains

• REST API – allows us to use single source of truth with versioning in the cloud

• Too much has not been shown in too short tutorial

• Denotational semantics with formal foundations

• Get more information and details from GITHUB (link: see last slide) 
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Outlook

• Many tool vendors work on adaption of tools

• SysMD Notebook as demonstrated will be open-source 

• Small, but growing supported subset

• Deeper integration of Documents and Models

• Improvement of solver and its integration with KerML

• I wonder, what LLM can do with Documentation + linked SysML v2 model ☺
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References & Resources

Github repository of SysML v2 Submission Team (SST)

https://github.com/Systems-Modeling/SysML-v2-Release

In “doc”

• Comprehensive introduction to SysML v2 Diagrams

• Comprehensive introduction to SysML v2 Textual

• Detailed documents for KerML, SysMLv2 and API

Google group: 

https://groups.google.com/g/sysml-v2-release?pli=1
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Feel free to ask your question

Thank you
cgrimm@rptu.de
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