

Successive Refinement – An approach to

decouple Front-End and Back-end Power

Intent
Sinha Rohit Kumar

Intel Technology Private Ltd

Bangalore, India -560103

rohit.kumar.sinha@intel.com

Kotha kavya
Intel Technology Private Ltd

Bangalore, India -560103

kotha.kavya@intel.com

Abstract- IEEE 1801 UPF [1] format comes with a limitation that it doesn’t entirely support decoupling of front and

backend power intent files and as many SoC projects in Intel are marching towards ASIC products on different process

technologies, it becomes all the more important for designers to code power intent with the process agnostic approach.

Therefore, IEEE 1801-2015 UPF (UPF3.1) [2]has come up with a methodology called Successive refinement that supports

Incremental specification. This methodology enables incremental design and verification of the power management

architecture, and it is specifically designed to support specification of power management requirements for IP

components used in a low power design. This incremental flow accelerates design and verification of the power

management architecture using partition methodology wherein the power intent is partitioned into constraints,

configuration, and implementation. In this paper, we will present the new methodology Successive refinement

implemented for IOTG-SOC in which power intent is specified in a technology independent manner and verified

abstractly before implementation.

I. INTRODUCTION

Use of IP in SoC’s is essential in order to meet time-to-market requirements and leveraging existing technologies

efficiently. So, designing the power management mechanism should involve both IP requirements and SoC

concerns. UPF(IEEE 1801 UPF) format which we are using now follows an implementation-methodology that

provides power-management structures and behavior for a design which drives both verification and

implementations steps. There are some problems with this methodology.

In this paper, we will present the new methodology Successive refinement in which power intent is specified in a

technology independent manner and verified abstractly before implementation

Following are the challenges of using implementation oriented UPF

• After investing a lot of verification effort to prove that the strategy and UPF file are correct, if the UPF file

has to be modified or re-created after selection of the target process technology, the verification equity built up is

lost and the verification process has to be repeated with associated delays and extra resource costs. So, power aware

verification is often postponed until late in the flow

• IPs are re-used either in different SoC’s, different generation of same SoC’s or in different target

technologies. So, if IP UPF contains implementation details, it should be re-generated based on the customer’s

usage.

Successive Refinement addresses both of these issues. This methodology defines

• How an IP provider can provide UPF that specify constraints on the use of an IP component within a

system, without knowledge of the characteristics of the system.

• How UPF can be used by the system integrator to specify the logical configuration of power management

for the individual IP components used in the system and for the system as a whole. This enables early verification of

the power management architecture before any implementation decisions are made.

• How UPF can be used by the system implementer to realize the power intent in the context of a given

technology and implementation approach

mailto:rohit.kumar.sinha@intel.com
mailto:kotha.kavya@intel.com

The concept and methodology come with an idea of adding detailed description of power management in different

files by separating the logical functionality of power management for a system from the technology-specific

implementation of the system.

II. SUCCESSIVE REFINEMENT AND ITS CHALLENGES

Successive refinement in UPF allows an IP provider to capture the low power constraints inherent in an IP block

without predicting a particular configuration. Then any customer who uses that IP can configure the IP, within these

constraints, for their particular application without predicating a particular technology specific implementation. The

result is a simulatable but technology-independent golden source against which all technology specific

implementations can be verified. In this way the verification of strategies and UPF file need not be repeated even if

implementation details change.

Figure 1. Successive Refinement Flow

 Successive refinement essentially partitions the upf into three categories

A. Constraint UPF

The constraint UPF file is the most abstract view of power intent. This file is used to describe constraints on the

power intent of the design, as it applies to a particular design component. This UPF describes the power intent

inherent in the IP like power domains/states/isolation/retention etc. The IP developer creates Constraint UPF. The

Constraint UPF file should not be replaced or changed by the IP consumer. It is completely verified by the IP owner

and IP consumer can use it for any power management implementation Approach. The Constraint UPF contains

following :

1) Defining Atomic Power Domains

 The Constraint UPF file defines each power domain that is identified in the specification for the IP component.

The option –atomic indicates that this power domain cannot be further partitioned by the IP consumer. If the IP

Customer doesn’t want the power domain specified to be modified in the SoC, it can be specified with a regular

power domain definition.

 Power domain can be defined as follows

Figure 2. Atomic power domains in constraint upf

Note: Tcl variable $ is used to represent list of elements , ports or exceptions which has same supply, power state or

a clamp value

2) Define Isolation Requirements

 Isolation is not actually specified in the constraint UPF file for an IP component. Implementation of retention,

isolation is an implementation choice and is usually left for IP licensees to decide whether they would like to include

it in their design. However, it is necessary to specify which state elements must be retained, isolated if the user

decides to make use of retention, Isolation in his power management scheme.The Constraint UPF file should specify

the isolation clamp values that must be used if the user decides to shutdown portions of the system as part of this

power management scheme.

The command ‘set_port_attributes’ is used to define the clamp value requirements:

Figure 3. Isolation Clamp Values

3) Define retention elements for strategy

Specify the retention on the state elements if the user decides to make use of retention in his power management

scheme. set_retention_elements retn_list_<name> -elements [list <Retention elements>]

4) Define power states without voltage value

For constraint UPF, add_power_state should be used to define the fundamental power states of an IP block and its

component domains in a technology-independent manner. This implies that power states should be defined without

reference to voltage levels. Similarly, constraint UPF should not impose any particular power management approach

on the IP consumer, so it should define power states without dictating how power will be controlled.

Figure 4. Fundamental power states

B. Configuration UPF

The IP consumer adds Configuration UPF describing his system design including how all the IP blocks in the

system are configured and power managed. The Configuration UPF consists of

1) Define design ports

 Add design ports that a design may use to control power management logic are defined using create_logic_port,

create_logic_net, connect_logic_net and used for validation

Figure 5. Logic ports, nets definition and connection

2) Define ISO/RET strategies and how they are controlled

In the configuration file, an isolation strategy must specify clamp values consistent with the specifications in the

constraint UPF.

Figure 6. Isolation Strategy

 If there are any retention strategies used in the power domain those are also specified in the configuration UPF.

The ‘set_retention’ command is used to specify a retention strategy.

C. Implementation UPF

This UPF file is used to provide the implementation details and technology specific information that is needed for

the implementation of the design. It contains low level details of power switches and voltage rails (supply nets). It

defines which supply nets are connected to the supply sets defined for each power domain. This file also defines the

formation of any power switches that have been chosen for this implementation. This UPF contains

1) Define supply and network elements for the design

The first thing that needs to be done in Implementation UPF is definition of the supply nets and creation of the

supply network. This can be done by using the commands ‘create_supply_port’ and ‘create_supply_net’ as shown

below.

Figure 7. Supply nets and Supply ports

2) Defining Power Switches

 This methodology requires IPs to no longer create power switches and it's up to the SOC Integrator to handle all

the validation. The design team does not have to make any decisions prior to implementation UPF about the

formation of the switch design it needs for the implementation. This also helps to keep the constraint UPF and

configuration UPF files in an abstract form that is used for RTL verification purposes.

Figure 8. Power switches

3) Connecting supply nets with supply sets

The option –update is used to add the names of the supply nets to be connected to functions power, ground of the

respective supply set

Figure 9. supply sets

Figure 10. supply nets

4) Define Supply Voltages in power states

Figure 11. power states

Flow diagram

Defnes low power
constraints

Configuration wrt target
system and Validation of
Configuration UPF

+

Simulation,

Design

analysis,

Logical

Equivalenc

e Checking

Figure 12. Design Low Power Flow Diagram with Successive refinement flow

Successive refinement design flow is illustrated in Figure 12 . The IP developer creates Constraint UPF that goes

along with the RTL for a soft IP component. The Integrator adds Configuration UPF describing his system design

including how all the IP blocks in the system are configured and power managed. The Configuration UPF loads in

the constraint UPF for each IP so that tools can check that the constraints are met in the configuration. Once the

configuration specified by the Integrater has been validated, the implementer adds Implementation UPF to specify

implementation details and technology mapping. This complete UPF specification then drives the

implementation process.

III. RESULTS

 In Intel Client-SoC, we have implemented successive refinement methodology to decouple front-end UPF from BE-UPF and

it was successfully accepted. Also, we have piloted it on IOTG-SoC design and work is in progress to scale it to multiple

subsystems.

One of our clients SoC accepted IP power intent either:

• In process and project agnostic way – using “successive refinement” methodology

Implementation UPF that

is provided for synthesis

• Or in aligned with project SD(Structural Design) and topology – using traditional delivery

Internal IP delivered UPF following the first approach. UPF commands and options were limited by currently

supported by all vendor flow tools. IP level validation was limited by tools as well.

• All layers (including implementation) were required for logic validation and simulation. LRM claims

implementation portion only for structural design.

• Only UPF2.1 commands and options are used. E.g., associate_supply_set command -handle option was

used to connect SoC with IP supplies.

• Updating of power state (add_power_state) with -illegal option was not allowed by tools. To avoid conflict

between IP and SoC PST last one was disabled after integration for structural design.

SoC used bottom-up approach and consumed IP integration wrapper, which included constraint and configuration

files. SPA with driver/receiver supply were put to configuration part. Most of configuration IP UPF were not

updated by SoC (except removing redundant ISO after disabling internal gated PD). Implementation layer one per

SD entity (e.g., partition) was automatically created by SoC. Partition UPF looks schematically:

• If IP UPF is delivered using IEEE 1801 UPF format i.e., if the UPF contains implementation details it is

consumed in the SoC and validated using traditional method

IP UPF in “successive refinement” format keeps backward compatibility with traditional way. All layers

(including implementation) produce the same traditional UPF: the same content is described by about the same

commands are specified in different order and in incremental way.

IV. SUMMARY

In one of our IP, we have implemented successive refinement methodology to decouple front-end UPF from BE-

UPF and it was successfully accepted. Also, we have piloted it on CPU Subsystem design and work is in progress to

scale it to multiple subsystems.

Below are some of the highlights

• A UPF power intent specification for a SoC with multiple IPs having different levels of physical

hierarchical implementation and UPF specifications was created

• The UPF specifications for individual IPs were verified for structural checks through static checks and

formal methods.

• The power models created for memories and PHY were elegant and re-use of the power model was

achieved in the successive refinement process.

• The power intent of hard macros is modelled with power states for the hard macro.

• The higher-level interface of each IP was modelled through port attributes based on UPF interface scenario

– IP or system level

• Each IP was verified with the UPF in their block level verification environment and at the top level using

the SoC level verification environment.

• The use of UPF for IP block verification, IP hard macro implementation, SoC verification and SoC

implementation was seamless with no changes to the IP or SoC UPF between processes

REFERENCES
[1] IEEE Std 1801™-2009, "IEEE Standard for Design and Verification of Low-Power Integrated Circuits," 27 March 2009. [Online].

[2] IEEE Std 1801™-2015, "IEEE Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems," 5 December 2015.

[Online].
[3] [3] A. Khan, J. Biggs, E. Quigley and E. Marschner, "Successive Refinement: A methodology for incremental specification of power,"

DVCON, March 2015.K. Elissa, “Title of paper if known,” unpublished.

load IP#1_wrapper.upf -scope IP#1

load IP#2_wrapper.upf -scope IP#2

…

load IP#N_wrapper.upf -scope IP#N

source partition implementation.upf

