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Abstract — Memory model verification is one of the most 

important and complex processes in functional verification of 

advanced microprocessors. Various components (such as system 

bus, buffers, caches, memory management unit, and so on) 

comprise the memory system, and each component demands 

verification of its functionality for all possible states. This paper 

proposes various scenarios onto which memory model state space 

can be covered to a large extent. The stimulus generation should 

revolve around these methods to impose verification of the 

memory model. Combinations of such methods will ensure 

coverage to a large number of corner cases, which are practically 

infeasible to be generated on a stand-alone basis. The proposed 

methods extend over Uni/Multi processor scenarios and ensure 

the integrity of stimulus at the architecture level. 

I. INTRODUCTION 

Functional verification of the memory system is a vital 
module of the functional verification of a microprocessor. 
Functional verification is the task of verifying that the logic 
design functions as expected; in other words, it is functionally 
correct. The functional verification of the memory system 
basically comprises verification of the implemented memory 
model. And verification of functionality of hardware (such as 
system bus, read and write buffers, caches at different levels, 
physical memory, and memory access controller) against the 
memory operations issued verifies implementation of the 
memory model. 

Fig. 1. Conceptual view of a memory model 

A memory model is a contract between hardware designers 
of memory systems and programmers that describes how a 
memory system behaves in response to memory operations 
such as reads and writes [1]. Processes P1, P2, and Pn issue 
various memory operations to the memory system, as shown in 
Figure 1. Typically, these memory operations are reads and 
writes to various memory locations. A memory model defines 
the set of possible ways to execute these operations from 
various processes [1]. The memory model must ensure that the 
program will not read or write a wrong value from or to 
memory at any point of time in execution. 

A memory model for a typical uniprocessor system is the 
classic Von Neumann memory model, which requires that all 
memory operations in a program complete in the order in 
which they appear in the program. Memory models for 
multiprocessors are usually much more involved because of 
complex interactions between memory operations on different 
processors. One of the first memory models proposed for 
multiprocessors is sequential consistency [2], which extends 
the uniprocessor memory model for multiprocessors in a 
natural and intuitive way. A multiprocessor system is 
sequentially consistent if the result of any execution is the same 
as if the operations of all the processors were executed in some 
sequential order, and the operations of each individual 
processor appear in this sequence in the order specified by its 
program [3]. Sequential consistency is the strongest memory 
model proposed for multiprocessor memory systems. How-
ever, it restricts the use of many commonly-used optimizations 
in the design of memory systems [3]. 

Hence, weaker memory models [4] have been proposed as 
an alternative to sequential consistency to achieve better 
performance. Weaker memory models relax the constraints of 
sequential consistency in one or more ways, enabling various 
optimizations. Modern-day multiprocessor systems provide 
weaker memory models, providing a considerable 
enhancement in performance. The SPARC V9 architecture 
proposes one such weaker memory model with Total Store 
Order (TSO) [5]. Read operations are allowed to bypass a write 
operation to a different address. All write operations are 
enqueued in the write buffer in program order. These write 
operations are completed by updating the memory when the 
processor can access the memory. If a write operation for the 
same address as a read operation is enqueued in the queue, then 
the read operation completes by reading the value associated 



with the write operation in the queue. Otherwise, the read 
operation bypasses the write buffer and completes by reading 
the value from the memory. Note that all reads complete in 
program order and no write is allowed to bypass a read. 

To verify weakly-ordered memory, the simplest way is to 
execute the sequence of memory operations from a stimulus on 
the memory model and see whether or not it is behaving as 
expected. However, doing this alone will not cover all the state 
space of the memory model. The key is to cover as many 
scenarios as possible. To achieve this, we can explore the 
following methods, which cover different aspects of memory 
model verification. All these verification methods are stimulus-
based and can be used to generate stimulus. The generated 
stimulus will try to cover some or more scenarios, depending 
upon the methods used to generate it, and then it will be 
verified against the expected execution. 

A. Contribution of This Paper 

This paper aims to improve memory system verification 
with the help of different randomization techniques. These 
techniques ensure that test generation need not be too complex, 
and that it is not required to take all the aspects of the memory 
model space into consideration for the generation. These 
techniques are more useful to generate stimulus using 
verification test generator tools like Random Test generators 
[6] [7] [8]. This paper describes both random test generation as 
well as random environment techniques like page table 
randomization, random bus configuration, and so on. 

II. RANDOMIZATION ON MEMORY OPERATIONS 

A microprocessor can support one Instruction Set 
Architecture (ISA) or more. An ISA (AArch32, AArch64, 
Thumb, or other [9] [10]) defines the instructions or operations 
(in this paper, the terms instruction and operation mean the 
same) and their behavior. For example, “MOV R1, R2” is an 
instruction from AArch32, and it moves the data of R2 into R1 
(where R1 and R2 are registers). A domain of instruction for a 
microprocessor is comprised of all the instructions and their 
variants (based on addressing modes and access size) from all 
the supported ISAs. Consider a subdomain of all the memory 
operations and their variants. A generated stimulus will contain 
random operations from the considered domain. 

Fig. 2. Possible architectures, addressing modes, and access sizes 

This method covers verification of the ISA and some 
simple scenarios in memory verification like operations 
ordering and accesses of different sizes. Verification of 
memory operations behavior against memory model is also an 
important aspect of memory verification. This method can 

verify support for accesses of different sizes and different 
addressing modes. It can also verify the normal memory 
operation ordering and dependency. A large stimulus will 
cover the domain of instructions, while a small stimulus (which 
covers a sub domain) can be useful to target different aspects. 

We can have control over selection of memory operations 
based on architecture, access size, and addressing modes for 
targeted verification of memory operation. The controlled 
selection of an operation can be seen as a weighted selection 
tree, as shown in Figure 4. The nodes of a tree, showing the 
selection criteria and the edges from parent node to child node, 
have the relative weights to select the particular child node. A 
weight W of any edge is the probability of being selected 
among other edges from any node. And the selected edge will 
give the next selection criteria. For example, Warch1 is the 
probability that Architecture 1 will be selected for the next 
level from all N available architectures. The sum of weights of 
all edges starting from one node is 1. On the leaves of the tree, 
a group of instructions will be collected, based on the criteria 
that come in the path from the root to that particular leaf. This 
group can then be used to pick one random operation. 

For generation of each new instruction for the stimulus, one 
path will be selected. At each level, starting from the root, 
selection of a node in the next level (based on weight) is done 
to determine the path. The end of the path will give a group to 
select an instruction or operation. If all the weights on all of the 
edges of the tree are the same, then the probability of any 
instruction being selected is the same, as all paths are equally 
eligible. This will be a case of unbiased randomization over the 
entire domain of memory operations. Uneven weights for 
outgoing edges at any node make some next nodes more 
probable to be selected over others. 

Fig. 3. Weighted tree example 

Fig. 4. Selection tree of memory operations 



Consider Figure 3, in which the tree is biased towards node 
A at the first level. Thus node A is more likely to be selected 
than node B. However, once the node is chosen at the first 
level (A or B), all weights are equal at the second level; 
therefore C and D are equally likely to be selected, which is 
totally random, not biased. 

In the tree in Figure 4, the path shown in bold arrows will 
result in a group of memory operation variants which are from 
architecture 1, having an addressing mode of 1, and which 
access the memory of access size 2. The memory addresses 
that are accessed in generated stimulus are not in control, but 
rather the accesses are random. This method alone is not of 
much significance, as it does not cover corner cases. This 
method is more to verify the behavior of memory operations. 

If A is the number of architectures to be verified as having 
B addressing modes over C varieties of access sizes, then the 
complexity space of verification would be: (AxBxC)! 

III. CONSTRAINED MEMORY REGION 

The main memory size is large in modern microprocessors, 
and one should be able to target verification to specified 
regions in addition to full memory verification at a particular 
time. In this method, one or more memory regions are 
considered for the stimulus generation. 

After selection of a memory operation, a memory region is 
selected randomly or based on relative weights from 
considered memory regions for that memory operation to 
access. Any accesses made by the operation must not cross the 
boundary of the selected memory region. A memory region is 
defined by starting address (min addr) and ending address (max 
addr), both of which are inclusive. Suppose the access size 
(Figure 2) for the operation is X bytes. The operation will 
access X continuous bytes, and all X bytes must fall in the 
memory region (min addr, max addr). The starting address of 
the access made by operation must not fall within the last X 
bytes of the memory region. The domain for the starting 
address of the operation would be (min addr, (max addr – X)), 
as shown in Figure 5. This method follows for all the 
subsequent operations in the stimulus. This specified region is 
the hard (must be followed) constrained region, hence the 
starting address for the operation must be selected from this 
region only. 

Initially, the selected memory region is constrained based 
on the access size of the operation. Furthermore, the specified 
region can be constrained by some soft constraints, based on 
overlapped access and unaligned access. 

Fig. 5. Memory region 

Overlapped Access: In a stimulus generation, operations 
are generated one by one. A memory region among all 
considered memory regions can be selected many times for 
memory operations in generation. At any instance of 
generation, some of the addresses in a memory region have 
already been used by generated operations. If the same 
memory region has been selected for current selected memory 
operation, then the starting address can be selected either from 
the previously accessed part or from the unused part of the 
memory region. The starting address selected from the 
previously accessed part will cause overlapped access. 
Consider a part of generated stimulus as given below. The 
LDR operation has an access size of 4 bytes (a word). It will 
access 0x4000, 0x4001, 0x4002, and 0x4003. The memory 
region that was selected for LDR operation has these 
addresses. In that region, these addresses have been used after 
LDR. Now, if the same memory region is selected for any 
selected instruction going forward, these four addresses will be 
seen as used, and the memory region might contain many other 
unused addresses. If the starting address for that instruction 
falls within these used addresses, this could cause an 
overlapped access. In the following example, LDRB (access 
size = 1 byte) is showing overlapped access. 

MOV R1, #0x4000 

LDR R8, R1 

MOV R1, #0x4003 

LDRB R9, R1 

The generation can have weighted constraint on overlapped 
access. Based on weight, the generation will select a used or 
unused part of the memory region to get overlap or non-
overlap access, respectively. Although it is not a hard 
constraint, there is no used address available for the first 
operation in a stimulus, therefore overlapped access is not 
possible and constraint cannot be followed. 

Unaligned Access: an unaligned memory access occurs 
when a memory operation with an access size of X bytes tries 
to access data starting from an address that is not evenly 
divisible by X (addr % X != 0). For example, reading 4 bytes 
of data from address 0x10004 is fine, but reading 4 bytes of 
data from address 0x10005 would be an unaligned memory 
access. 

Unaligned access is costly. For instance, one memory 
operation of X bytes will actually access two aligned X bytes 
to get unaligned X bytes, as shown in Figure 6. However, some 
architectures support unaligned access for some of the memory 
operation. For example, ARMv8 supports unaligned access for 
LDR instruction [10]. 

Fig. 6. Unaligned access 



Alignment can also be one of the constraints on the starting 
address of the access by a memory operation to verify aligned 
access, unaligned access, and a mixture of the two (access 
selection is based on relative weights). It is also not a hard 
constraint; for example, if the memory operation selected 
supports aligned access only, then unaligned access is not 
possible for that instance in generation. 

IV. DEFINING MEMORY REGIONS 

A. Stimulus Generation for a Uniprocessor 

Only one memory region is considered for the generation. 
All the operations generated will select access addresses from 
this region only. In this way, the verification can be targeted to 
a specific memory region. 

Alternatively, more than one memory region can be 
considered. In this case, a memory region is first selected for a 
memory operation from all considered memory regions, and 
then that memory region will be constrained based on other 
parameters. One can verify the behavior of memory system if 
the accesses in the stimulus are from more regions (belonging 
to different parts of memory). For example, one can verify how 
the memory system is behaving if two accesses are either very 
distant (in different and distant regions) or in the same cache 
line (in the same region). 

B. Stimulus Generation for a Multiprocessor 

In the case of a multiprocessor system, one or more 
memory regions can be considered. However, these memory 
regions need to be divided further. Consider a system of M 
clusters having N processors each (Figure 7). For each 
processor, one or more divisions of a memory region are 
assigned such that each processor has its own access space. 
This division is necessary because physical memory is shared 
between processors and we are not considering true sharing 
scenarios. 

Fig. 7. Microprocessors system M = 2 and N = 4 

False sharing occurs when processors in a shared-memory 
access to different addresses within the same coherence block 
(cache line or page) [11]. True sharing occurs when the same 
addresses are accessed by the processors. True sharing between 
the processors is to be verified using some sort of locking 
mechanism, such as semaphores or mutex locks. Excluding 

true sharing scenarios from the memory model for 
multiprocessor functional verification will reduce the state 
space of verification. True sharing in the memory model is not 
considered in any of the methods proposed. 

Fig. 8. False and true sharing 

Each memory region can simply be divided into N*M 
equal divisions. Every processor will be assigned one of these 
N*M divisions in each memory region. Each processor is now 
analogous to a uniprocessor with memory regions assigned as 
divisions in memory regions. 

For cache verification, cache line sharing (false sharing) 
between processors would be an interesting scenario. If the 
memory region is divided as mentioned above, only the cache 
line at the boundary of divisions will be shared between the 
processors (also if the boundary is dividing a cache line and 
does not lie at the end of the cache line). In Figure 9, cpu0 and 
cpu1 are sharing a cache line at the boundary of their divisions 
in the memory region. The greater size of the region will result 
in a larger size of division and lessen the chances of false 
sharing because, at the maximum, only one cache line is shared 
between the two divisions. 

Fig. 9. Simple division of memory 

If only one memory region is defined, the same cache line 
will always cause false sharing between the two processors 
which are sharing a boundary of division. And at maximum, 
N*M – 1 cache lines between processors (when every nth 
processor shares a cache line with the (n+1)th processor) and 
M – 1 cache lines between clusters (two clusters will share a 
cache line if the last processor of one cluster shares a cache line 
with the first cache line of the second cluster), which are less 
numbers if the region size is big. However it will be useful for 
targeted verification of a memory region. And sharing behavior 
on a particular cache line can be verified, if that cache line is at 
the boundary of some division and the size of the memory 
region is of few cache lines, to get the sharing more often in a 
stimulus. 



In the case of more than one memory region, one processor 
will get more divisions (one in each memory region), so more 
cache lines are shared between processors. But the probability 
of false sharing will be the same if the sizes of memory regions 
are the same because the number of memory regions is also 
increased. However, more cache lines will be verified for false 
sharing as there will be one cache line shared between the two 
processors sharing a boundary in each memory region. 

The memory region can be divided in different ways to 
achieve different goals. One way is to divide the memory 
region into equal parts (say P), and then each part is divided 
into N*M divisions. Total P*N*M divisions where each 
processor will be assigned P divisions (from P parts) are shown 
in Figure 10.  

Another way to define a memory quantum is as a division 
size (say m, where memory region size is divisible by m). The 
quantum is assigned to processors in round robin fashion. The 
processors take each quantum one by one. After the last 
processor has taken its quantum, the next quantum will be 
taken by the first processor, and so on. 

Fig. 10. Part-wise division of memory 

In this way, a processor will get more divisions in one 
memory region and will access memory from different parts of 
memory. The probability of false sharing is greater here with 
respect to previous method. By changing the size of the parts, 
one can create different scenarios. For example, if the size of 
the part is equal to the size of the cache line, then all of the 
accesses in the stimulus are false shared. 

V. SOME OTHER TEST GENERATION SCENARIOS 

Cache Clean and Invalidate: Clean operation causes the 
contents of the cache line to be written back to memory (or the 
next level of the cache), but only if the cache line is dirty. That 
is, the cache line holds the latest copy of that memory. 
Invalidate simply marks a cache line as invalid, meaning the 
cache line will not be hit. Invalidate alone will invalidate the 
dirty line, too; which might result in loss of data. Therefore, an 
invalidate operation should always come after a clean 
operation. 

In between memory operations in a stimulus, the generator 
can put random instruction to clean or clean and invalidate the 
specific or random cache lines. This will target the verification 
of eviction and refill in the memory system and verification of 
behavior of memory at different levels when explicit cleaning 
of the specific cache lines is carried out. 

Stride Access Pattern: Simple stride access pattern is 
controlled accesses of the same size after every interval of a 
particular size. Complex stride patterns may have 
increasing/decreasing (in a particular pattern) interval sizes or 
increasing/decreasing (in a particular pattern) access sizes or a 
combination of the two. The stride access patterns are accessed 

more efficiently in memory system. The memory system 
detects the pattern and prefetches the next probable data for 
access to a lower level of memory (caches). The generator can 
put specified and controlled macros of stride accesses in 
between the stimulus randomly. It will target the verification of 
prefetcher, bus interface unit, and supported patterns. 

Bus Configuration Randomization: Memory systems can 
have more than one bus for general and special memory 
accesses. The generator can either choose a specific bus or 
select the bus randomly from available buses for accesses over 
default buses to verify the functionality of the buses. This can 
be done by setting system configuration, so the generator 
should generate a stimulus in which the system configuration is 
also manipulated on the user’s inputs or on a random basis. 

Flushing Read (RAC) and Write Buffers Randomly: Any 
memory operation in a memory system reads or writes into the 
memory at a different level. These read and write transactions 
go through read and write buffers. Different memory models 
may have different rules over the buffers, like a read following 
a write transaction on same address might wait or can read 
from a write buffer if the write transaction is still not 
completed. These types of rules are defined for read and write 
buffers for all combinations of transactions. 

To verify buffers and the memory model rules over them, 
the generator can explicitly flush or fill the buffers in between 
the stimulus in controlled or random fashion and then try a 
different combination of memory transaction on the same 
addresses which are in buffers or on different addresses. To 
flush a buffer, the generator can use system or configuration 
operation; and to fill it, it can use stride or continuous accesses 
until the buffer is full. 

VI. PAGE TABLE RANDOMIZATION 

Page tables can be generated for verification tests which 
will do the translation from virtual space to physical address 
space. The page table descriptors contain memory attribute 
information. Page table descriptors decide the memory 
verification area onto which verification testing will focus. 
Generally, the page table entries are created in the test 
generation and are static throughout the test execution duration. 

Page table randomization is aimed towards having a 
verification test that ensures coverage of different memory 
model attributes every time the test is executed. To cover all 
the memory attributes of memory, the test generation need not 
address all the various aspects of the memory model. For 
example, the test is not aware that the load/store transactions 
are of the write back write allocate or write back not write 
allocate memory model. Hence the same test can be used to 
cover all the memory attributes with page tables that are 
randomized at run time. 

Page table randomization involves randomization of the 
attributes in the page table descriptors, which defines the 
memory model properties for the page. For example, 
ARMv7/v8 page table descriptors contain various attributes 
like cacheable, shareable, global, Secure-Non Secure, and so 
on. 



Page table randomization flow: 

 Set up page table: Initially set the basic translation page 
table, which is static.  

 Disable MMU: Disable the MMU to avoid any 
translation by any of the CPU cores until new page 
table entries are created. 

Randomized page table: 

 The page table entry is randomly selected (mostly from 
the address space where the test is going to perform 
most of the transactions).  

 Depending on the user input, a page table descriptor is 
randomized to get a randomized memory model for the 
page.  

 Flush the TLB: clean the Translation Look-aside Buffer 
entries to invalidate the previous page table translations. 

 Enable MMU: Switch on the MMU for address 
translation. 

A. Experiment on Page Table Randomization 

This experiment was conducted to plot the scope of 
memory attributes covered for the verification purpose with the 
help of the page table randomization technique. One random 
test was executed 1000 times with page table randomization 
and plotted against 1000 directed tests generated with different 
page tables randomly generated. 

 

Fig. 11. Results of randomized test vs. directed tests 

Hit ratio = Number of times the attribute is seen/total 
number of times the test is executed. 

Figure 11 shows a single test with page table randomization 
to have more proper distribution over the memory attributes 
than 1000 directed tests. The mutually exclusive attributes like 
WriteBack-Write, allocate (wbwa), and WriteBack-Not Write 
allocate (wbwna) have more random distribution than directed 
tests. Similarly, all the attributes are covered, including 
Strongly-Ordered (SO), Non Cacheable (NC), and so on. The 
attributes are considered from the ARMv7/v8 architecture page 
table descriptors [9] [10]. 

The advantage of page table randomization is clearly seen 
as only one memory verification test is required, which on 
stimulus randomization produces effective results. 

VII. CONCLUSION 

Memory System verification has a huge state space to be 
covered and demands significant amount of stimulus 
generation. The methods described in this paper can be used to 
generate dense constrained random stimuli. Though the state 
space coverage of memory verification of these methods varies 
from processor to processor, the initial basic verification state 
space, including memory operations and uni/multiprocessor 
scenarios, will be well covered. Memory model verification 
ensures verification of the memory system of a microprocessor. 
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