
Stimulus Generation for Functional Verification of

Memory Systems in Advanced Microprocessors

BhanuPratap Singh Chouhan, Vaibhav Anant

Ashtikar, Basavaraj Talawar, Vani M.

National Institute of Technology Karnataka, Surathkal

Karnataka, India

Krishnakumar Ranganathan, Nagesh Vishnumurthy

Broadcom Corporation

United States

Abstract — Memory model verification is one of the most

important and complex processes in functional verification of

advanced microprocessors. Various components (such as system

bus, buffers, caches, memory management unit, and so on)

comprise the memory system, and each component demands

verification of its functionality for all possible states. This paper

proposes various scenarios onto which memory model state space

can be covered to a large extent. The stimulus generation should

revolve around these methods to impose verification of the

memory model. Combinations of such methods will ensure

coverage to a large number of corner cases, which are practically

infeasible to be generated on a stand-alone basis. The proposed

methods extend over Uni/Multi processor scenarios and ensure

the integrity of stimulus at the architecture level.

I. INTRODUCTION

Functional verification of the memory system is a vital
module of the functional verification of a microprocessor.
Functional verification is the task of verifying that the logic
design functions as expected; in other words, it is functionally
correct. The functional verification of the memory system
basically comprises verification of the implemented memory
model. And verification of functionality of hardware (such as
system bus, read and write buffers, caches at different levels,
physical memory, and memory access controller) against the
memory operations issued verifies implementation of the
memory model.

Fig. 1. Conceptual view of a memory model

A memory model is a contract between hardware designers
of memory systems and programmers that describes how a
memory system behaves in response to memory operations
such as reads and writes [1]. Processes P1, P2, and Pn issue
various memory operations to the memory system, as shown in
Figure 1. Typically, these memory operations are reads and
writes to various memory locations. A memory model defines
the set of possible ways to execute these operations from
various processes [1]. The memory model must ensure that the
program will not read or write a wrong value from or to
memory at any point of time in execution.

A memory model for a typical uniprocessor system is the
classic Von Neumann memory model, which requires that all
memory operations in a program complete in the order in
which they appear in the program. Memory models for
multiprocessors are usually much more involved because of
complex interactions between memory operations on different
processors. One of the first memory models proposed for
multiprocessors is sequential consistency [2], which extends
the uniprocessor memory model for multiprocessors in a
natural and intuitive way. A multiprocessor system is
sequentially consistent if the result of any execution is the same
as if the operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified by its
program [3]. Sequential consistency is the strongest memory
model proposed for multiprocessor memory systems. How-
ever, it restricts the use of many commonly-used optimizations
in the design of memory systems [3].

Hence, weaker memory models [4] have been proposed as
an alternative to sequential consistency to achieve better
performance. Weaker memory models relax the constraints of
sequential consistency in one or more ways, enabling various
optimizations. Modern-day multiprocessor systems provide
weaker memory models, providing a considerable
enhancement in performance. The SPARC V9 architecture
proposes one such weaker memory model with Total Store
Order (TSO) [5]. Read operations are allowed to bypass a write
operation to a different address. All write operations are
enqueued in the write buffer in program order. These write
operations are completed by updating the memory when the
processor can access the memory. If a write operation for the
same address as a read operation is enqueued in the queue, then
the read operation completes by reading the value associated

with the write operation in the queue. Otherwise, the read
operation bypasses the write buffer and completes by reading
the value from the memory. Note that all reads complete in
program order and no write is allowed to bypass a read.

To verify weakly-ordered memory, the simplest way is to
execute the sequence of memory operations from a stimulus on
the memory model and see whether or not it is behaving as
expected. However, doing this alone will not cover all the state
space of the memory model. The key is to cover as many
scenarios as possible. To achieve this, we can explore the
following methods, which cover different aspects of memory
model verification. All these verification methods are stimulus-
based and can be used to generate stimulus. The generated
stimulus will try to cover some or more scenarios, depending
upon the methods used to generate it, and then it will be
verified against the expected execution.

A. Contribution of This Paper

This paper aims to improve memory system verification
with the help of different randomization techniques. These
techniques ensure that test generation need not be too complex,
and that it is not required to take all the aspects of the memory
model space into consideration for the generation. These
techniques are more useful to generate stimulus using
verification test generator tools like Random Test generators
[6] [7] [8]. This paper describes both random test generation as
well as random environment techniques like page table
randomization, random bus configuration, and so on.

II. RANDOMIZATION ON MEMORY OPERATIONS

A microprocessor can support one Instruction Set
Architecture (ISA) or more. An ISA (AArch32, AArch64,
Thumb, or other [9] [10]) defines the instructions or operations
(in this paper, the terms instruction and operation mean the
same) and their behavior. For example, “MOV R1, R2” is an
instruction from AArch32, and it moves the data of R2 into R1
(where R1 and R2 are registers). A domain of instruction for a
microprocessor is comprised of all the instructions and their
variants (based on addressing modes and access size) from all
the supported ISAs. Consider a subdomain of all the memory
operations and their variants. A generated stimulus will contain
random operations from the considered domain.

Fig. 2. Possible architectures, addressing modes, and access sizes

This method covers verification of the ISA and some
simple scenarios in memory verification like operations
ordering and accesses of different sizes. Verification of
memory operations behavior against memory model is also an
important aspect of memory verification. This method can

verify support for accesses of different sizes and different
addressing modes. It can also verify the normal memory
operation ordering and dependency. A large stimulus will
cover the domain of instructions, while a small stimulus (which
covers a sub domain) can be useful to target different aspects.

We can have control over selection of memory operations
based on architecture, access size, and addressing modes for
targeted verification of memory operation. The controlled
selection of an operation can be seen as a weighted selection
tree, as shown in Figure 4. The nodes of a tree, showing the
selection criteria and the edges from parent node to child node,
have the relative weights to select the particular child node. A
weight W of any edge is the probability of being selected
among other edges from any node. And the selected edge will
give the next selection criteria. For example, Warch1 is the
probability that Architecture 1 will be selected for the next
level from all N available architectures. The sum of weights of
all edges starting from one node is 1. On the leaves of the tree,
a group of instructions will be collected, based on the criteria
that come in the path from the root to that particular leaf. This
group can then be used to pick one random operation.

For generation of each new instruction for the stimulus, one
path will be selected. At each level, starting from the root,
selection of a node in the next level (based on weight) is done
to determine the path. The end of the path will give a group to
select an instruction or operation. If all the weights on all of the
edges of the tree are the same, then the probability of any
instruction being selected is the same, as all paths are equally
eligible. This will be a case of unbiased randomization over the
entire domain of memory operations. Uneven weights for
outgoing edges at any node make some next nodes more
probable to be selected over others.

Fig. 3. Weighted tree example

Fig. 4. Selection tree of memory operations

Consider Figure 3, in which the tree is biased towards node
A at the first level. Thus node A is more likely to be selected
than node B. However, once the node is chosen at the first
level (A or B), all weights are equal at the second level;
therefore C and D are equally likely to be selected, which is
totally random, not biased.

In the tree in Figure 4, the path shown in bold arrows will
result in a group of memory operation variants which are from
architecture 1, having an addressing mode of 1, and which
access the memory of access size 2. The memory addresses
that are accessed in generated stimulus are not in control, but
rather the accesses are random. This method alone is not of
much significance, as it does not cover corner cases. This
method is more to verify the behavior of memory operations.

If A is the number of architectures to be verified as having
B addressing modes over C varieties of access sizes, then the
complexity space of verification would be: (AxBxC)!

III. CONSTRAINED MEMORY REGION

The main memory size is large in modern microprocessors,
and one should be able to target verification to specified
regions in addition to full memory verification at a particular
time. In this method, one or more memory regions are
considered for the stimulus generation.

After selection of a memory operation, a memory region is
selected randomly or based on relative weights from
considered memory regions for that memory operation to
access. Any accesses made by the operation must not cross the
boundary of the selected memory region. A memory region is
defined by starting address (min addr) and ending address (max
addr), both of which are inclusive. Suppose the access size
(Figure 2) for the operation is X bytes. The operation will
access X continuous bytes, and all X bytes must fall in the
memory region (min addr, max addr). The starting address of
the access made by operation must not fall within the last X
bytes of the memory region. The domain for the starting
address of the operation would be (min addr, (max addr – X)),
as shown in Figure 5. This method follows for all the
subsequent operations in the stimulus. This specified region is
the hard (must be followed) constrained region, hence the
starting address for the operation must be selected from this
region only.

Initially, the selected memory region is constrained based
on the access size of the operation. Furthermore, the specified
region can be constrained by some soft constraints, based on
overlapped access and unaligned access.

Fig. 5. Memory region

Overlapped Access: In a stimulus generation, operations
are generated one by one. A memory region among all
considered memory regions can be selected many times for
memory operations in generation. At any instance of
generation, some of the addresses in a memory region have
already been used by generated operations. If the same
memory region has been selected for current selected memory
operation, then the starting address can be selected either from
the previously accessed part or from the unused part of the
memory region. The starting address selected from the
previously accessed part will cause overlapped access.
Consider a part of generated stimulus as given below. The
LDR operation has an access size of 4 bytes (a word). It will
access 0x4000, 0x4001, 0x4002, and 0x4003. The memory
region that was selected for LDR operation has these
addresses. In that region, these addresses have been used after
LDR. Now, if the same memory region is selected for any
selected instruction going forward, these four addresses will be
seen as used, and the memory region might contain many other
unused addresses. If the starting address for that instruction
falls within these used addresses, this could cause an
overlapped access. In the following example, LDRB (access
size = 1 byte) is showing overlapped access.

MOV R1, #0x4000

LDR R8, R1

MOV R1, #0x4003

LDRB R9, R1

The generation can have weighted constraint on overlapped
access. Based on weight, the generation will select a used or
unused part of the memory region to get overlap or non-
overlap access, respectively. Although it is not a hard
constraint, there is no used address available for the first
operation in a stimulus, therefore overlapped access is not
possible and constraint cannot be followed.

Unaligned Access: an unaligned memory access occurs
when a memory operation with an access size of X bytes tries
to access data starting from an address that is not evenly
divisible by X (addr % X != 0). For example, reading 4 bytes
of data from address 0x10004 is fine, but reading 4 bytes of
data from address 0x10005 would be an unaligned memory
access.

Unaligned access is costly. For instance, one memory
operation of X bytes will actually access two aligned X bytes
to get unaligned X bytes, as shown in Figure 6. However, some
architectures support unaligned access for some of the memory
operation. For example, ARMv8 supports unaligned access for
LDR instruction [10].

Fig. 6. Unaligned access

Alignment can also be one of the constraints on the starting
address of the access by a memory operation to verify aligned
access, unaligned access, and a mixture of the two (access
selection is based on relative weights). It is also not a hard
constraint; for example, if the memory operation selected
supports aligned access only, then unaligned access is not
possible for that instance in generation.

IV. DEFINING MEMORY REGIONS

A. Stimulus Generation for a Uniprocessor

Only one memory region is considered for the generation.
All the operations generated will select access addresses from
this region only. In this way, the verification can be targeted to
a specific memory region.

Alternatively, more than one memory region can be
considered. In this case, a memory region is first selected for a
memory operation from all considered memory regions, and
then that memory region will be constrained based on other
parameters. One can verify the behavior of memory system if
the accesses in the stimulus are from more regions (belonging
to different parts of memory). For example, one can verify how
the memory system is behaving if two accesses are either very
distant (in different and distant regions) or in the same cache
line (in the same region).

B. Stimulus Generation for a Multiprocessor

In the case of a multiprocessor system, one or more
memory regions can be considered. However, these memory
regions need to be divided further. Consider a system of M
clusters having N processors each (Figure 7). For each
processor, one or more divisions of a memory region are
assigned such that each processor has its own access space.
This division is necessary because physical memory is shared
between processors and we are not considering true sharing
scenarios.

Fig. 7. Microprocessors system M = 2 and N = 4

False sharing occurs when processors in a shared-memory
access to different addresses within the same coherence block
(cache line or page) [11]. True sharing occurs when the same
addresses are accessed by the processors. True sharing between
the processors is to be verified using some sort of locking
mechanism, such as semaphores or mutex locks. Excluding

true sharing scenarios from the memory model for
multiprocessor functional verification will reduce the state
space of verification. True sharing in the memory model is not
considered in any of the methods proposed.

Fig. 8. False and true sharing

Each memory region can simply be divided into N*M
equal divisions. Every processor will be assigned one of these
N*M divisions in each memory region. Each processor is now
analogous to a uniprocessor with memory regions assigned as
divisions in memory regions.

For cache verification, cache line sharing (false sharing)
between processors would be an interesting scenario. If the
memory region is divided as mentioned above, only the cache
line at the boundary of divisions will be shared between the
processors (also if the boundary is dividing a cache line and
does not lie at the end of the cache line). In Figure 9, cpu0 and
cpu1 are sharing a cache line at the boundary of their divisions
in the memory region. The greater size of the region will result
in a larger size of division and lessen the chances of false
sharing because, at the maximum, only one cache line is shared
between the two divisions.

Fig. 9. Simple division of memory

If only one memory region is defined, the same cache line
will always cause false sharing between the two processors
which are sharing a boundary of division. And at maximum,
N*M – 1 cache lines between processors (when every nth
processor shares a cache line with the (n+1)th processor) and
M – 1 cache lines between clusters (two clusters will share a
cache line if the last processor of one cluster shares a cache line
with the first cache line of the second cluster), which are less
numbers if the region size is big. However it will be useful for
targeted verification of a memory region. And sharing behavior
on a particular cache line can be verified, if that cache line is at
the boundary of some division and the size of the memory
region is of few cache lines, to get the sharing more often in a
stimulus.

In the case of more than one memory region, one processor
will get more divisions (one in each memory region), so more
cache lines are shared between processors. But the probability
of false sharing will be the same if the sizes of memory regions
are the same because the number of memory regions is also
increased. However, more cache lines will be verified for false
sharing as there will be one cache line shared between the two
processors sharing a boundary in each memory region.

The memory region can be divided in different ways to
achieve different goals. One way is to divide the memory
region into equal parts (say P), and then each part is divided
into N*M divisions. Total P*N*M divisions where each
processor will be assigned P divisions (from P parts) are shown
in Figure 10.

Another way to define a memory quantum is as a division
size (say m, where memory region size is divisible by m). The
quantum is assigned to processors in round robin fashion. The
processors take each quantum one by one. After the last
processor has taken its quantum, the next quantum will be
taken by the first processor, and so on.

Fig. 10. Part-wise division of memory

In this way, a processor will get more divisions in one
memory region and will access memory from different parts of
memory. The probability of false sharing is greater here with
respect to previous method. By changing the size of the parts,
one can create different scenarios. For example, if the size of
the part is equal to the size of the cache line, then all of the
accesses in the stimulus are false shared.

V. SOME OTHER TEST GENERATION SCENARIOS

Cache Clean and Invalidate: Clean operation causes the
contents of the cache line to be written back to memory (or the
next level of the cache), but only if the cache line is dirty. That
is, the cache line holds the latest copy of that memory.
Invalidate simply marks a cache line as invalid, meaning the
cache line will not be hit. Invalidate alone will invalidate the
dirty line, too; which might result in loss of data. Therefore, an
invalidate operation should always come after a clean
operation.

In between memory operations in a stimulus, the generator
can put random instruction to clean or clean and invalidate the
specific or random cache lines. This will target the verification
of eviction and refill in the memory system and verification of
behavior of memory at different levels when explicit cleaning
of the specific cache lines is carried out.

Stride Access Pattern: Simple stride access pattern is
controlled accesses of the same size after every interval of a
particular size. Complex stride patterns may have
increasing/decreasing (in a particular pattern) interval sizes or
increasing/decreasing (in a particular pattern) access sizes or a
combination of the two. The stride access patterns are accessed

more efficiently in memory system. The memory system
detects the pattern and prefetches the next probable data for
access to a lower level of memory (caches). The generator can
put specified and controlled macros of stride accesses in
between the stimulus randomly. It will target the verification of
prefetcher, bus interface unit, and supported patterns.

Bus Configuration Randomization: Memory systems can
have more than one bus for general and special memory
accesses. The generator can either choose a specific bus or
select the bus randomly from available buses for accesses over
default buses to verify the functionality of the buses. This can
be done by setting system configuration, so the generator
should generate a stimulus in which the system configuration is
also manipulated on the user’s inputs or on a random basis.

Flushing Read (RAC) and Write Buffers Randomly: Any
memory operation in a memory system reads or writes into the
memory at a different level. These read and write transactions
go through read and write buffers. Different memory models
may have different rules over the buffers, like a read following
a write transaction on same address might wait or can read
from a write buffer if the write transaction is still not
completed. These types of rules are defined for read and write
buffers for all combinations of transactions.

To verify buffers and the memory model rules over them,
the generator can explicitly flush or fill the buffers in between
the stimulus in controlled or random fashion and then try a
different combination of memory transaction on the same
addresses which are in buffers or on different addresses. To
flush a buffer, the generator can use system or configuration
operation; and to fill it, it can use stride or continuous accesses
until the buffer is full.

VI. PAGE TABLE RANDOMIZATION

Page tables can be generated for verification tests which
will do the translation from virtual space to physical address
space. The page table descriptors contain memory attribute
information. Page table descriptors decide the memory
verification area onto which verification testing will focus.
Generally, the page table entries are created in the test
generation and are static throughout the test execution duration.

Page table randomization is aimed towards having a
verification test that ensures coverage of different memory
model attributes every time the test is executed. To cover all
the memory attributes of memory, the test generation need not
address all the various aspects of the memory model. For
example, the test is not aware that the load/store transactions
are of the write back write allocate or write back not write
allocate memory model. Hence the same test can be used to
cover all the memory attributes with page tables that are
randomized at run time.

Page table randomization involves randomization of the
attributes in the page table descriptors, which defines the
memory model properties for the page. For example,
ARMv7/v8 page table descriptors contain various attributes
like cacheable, shareable, global, Secure-Non Secure, and so
on.

Page table randomization flow:

 Set up page table: Initially set the basic translation page
table, which is static.

 Disable MMU: Disable the MMU to avoid any
translation by any of the CPU cores until new page
table entries are created.

Randomized page table:

 The page table entry is randomly selected (mostly from
the address space where the test is going to perform
most of the transactions).

 Depending on the user input, a page table descriptor is
randomized to get a randomized memory model for the
page.

 Flush the TLB: clean the Translation Look-aside Buffer
entries to invalidate the previous page table translations.

 Enable MMU: Switch on the MMU for address
translation.

A. Experiment on Page Table Randomization

This experiment was conducted to plot the scope of
memory attributes covered for the verification purpose with the
help of the page table randomization technique. One random
test was executed 1000 times with page table randomization
and plotted against 1000 directed tests generated with different
page tables randomly generated.

Fig. 11. Results of randomized test vs. directed tests

Hit ratio = Number of times the attribute is seen/total
number of times the test is executed.

Figure 11 shows a single test with page table randomization
to have more proper distribution over the memory attributes
than 1000 directed tests. The mutually exclusive attributes like
WriteBack-Write, allocate (wbwa), and WriteBack-Not Write
allocate (wbwna) have more random distribution than directed
tests. Similarly, all the attributes are covered, including
Strongly-Ordered (SO), Non Cacheable (NC), and so on. The
attributes are considered from the ARMv7/v8 architecture page
table descriptors [9] [10].

The advantage of page table randomization is clearly seen
as only one memory verification test is required, which on
stimulus randomization produces effective results.

VII. CONCLUSION

Memory System verification has a huge state space to be
covered and demands significant amount of stimulus
generation. The methods described in this paper can be used to
generate dense constrained random stimuli. Though the state
space coverage of memory verification of these methods varies
from processor to processor, the initial basic verification state
space, including memory operations and uni/multiprocessor
scenarios, will be well covered. Memory model verification
ensures verification of the memory system of a microprocessor.

REFERENCES

[1] Ghughal, R. Test model-checking approach to verification of formal
memory models. Master’s thesis proposal. University of Utah, Salt Lake
City, UT, USA, June 1998.

[2] Lamport, L. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput. C-28, 9 (Sept.
1979), 690 691.

[3] Goodman, J. R. Cache consistency and sequential consistency. Tech.
Rep. 61, IEEE Scalable Coherence Interface Working Group, Mar.
1989.

[4] Adve, S. V., and Gharachorloo, K. Shared memory consistency models:
A tutorial. IEEE Computer 29, 12 (Dec. 1996), 66 76.

[5] Weaver, D. L., and Germond, T. The SPARC Architecture Manual
Version 9. P T R Prentice-Hall, Englewood Clis, NJ 07632, USA, 1994.

[6] L. Zhongshu, Y. Xiaolang, W. Jiebing and X. Zhihan. A Dynamic
Random Instruction and Stimulus Generation for Functional Verification
of Embedded Processor. Proceedings of the 5th International Conference
on ASIC, October 2003.

[7] Foumier, L, Arbetman, Y and Levinger, M. Functional Verification
Methodology for Microprocessors Using the Genesys Test-Program
Generator - Application to the x86 Microprocessors Family, Proceedings
of the Design Automation and Test in Europe Conference and
Exhibition (DATE99), March 1999.

[8] K. U. Bhaskar, M. Prasanth, G. Chandramouli, and V. Kamakoti. A
universal random test generator for functional verification of
microprocessors and system-on-chip in VLSID, 2005.

[9] ARM, ARM Architecture Reference Manual. ARMv7-A edition, ARM,
2012.

[10] ARM Architecture Reference Manual: ARMv8, for ARMv8-A
architecture profile, ARM Limited, 2013.

[11] Scott, M. L., and Bolosky, W. J., (1993): False Sharing and its effect on
shared memory performance. Technical Report MSR-TR-93-01,
Microsoft Research, One Way Microsoft, Redmond, WA 98052, 1993.

