
Software Driven Hardware Verification
A UVM/DPI Approach

Milan Purohit <mpurohit@solarflare.com>

Santanu Bhattacharyya <sbhattacharyya@solarflare.com>

Puneet Goel <puneet@coverify.com>

Amit Sharma <amit.sharma@synopsys.com>

© Accellera Systems Initiative 1

Agenda

• Computation Vs Communication

© Accellera Systems Initiative 2

• Verification Challenges

– UVM Based Block Verification

– Introduction Of The Solarflare System And The DUT

– Software Test Environment

• Solution For Taking Unit Test To System Test

• Unified Log Generation

• Conclusion

• Q & A

– System Level Software Driven Hardware Verification TE

• Software Verification Challenges

Computation Vs Communication

© Accellera Systems Initiative 3

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

– But network speed was usually
not fully utilized by machines

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

– But network speed was usually
not fully utilized by machines

– Till year 2002, Ethernet ports in
Linux systems had interrupt based
handling

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

– But network speed was usually
not fully utilized by machines

– Till year 2002, Ethernet ports in
Linux systems had interrupt based
handling

Can Processor Handle Data Now?

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

– But network speed was usually
not fully utilized by machines

– Till year 2002, Ethernet ports in
Linux systems had interrupt based
handling

Can Processor Handle Data Now?
• Communication speed hitting

400Gbps and 1000Gbps

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Computation Vs Communication

© Accellera Systems Initiative 3

• Processor speed and network data
speed have grown quite independent
of each other over years

• Thanks to demise of Moore’s Law,
processor clock has stagnated at
3GHz since 2005

• With introduction of every new IEEE
803.11 standard, network became
faster and faster

– But network speed was usually
not fully utilized by machines

– Till year 2002, Ethernet ports in
Linux systems had interrupt based
handling

Can Processor Handle Data Now?
• Communication speed hitting

400Gbps and 1000Gbps

Years
1995

B
a
n
d
w

id
th

 M
b
/S

e
c

100

1000

10,000

100,000

1,000,000 1000 Gigabit Ethernet

100 Gigabit Ethernet

40 Gigabit Ethernet

10 Gigabit Ethernet

Core Networking
Doubling = 18 Months

Server IO Doubling
~ 24 Months

2000 2005 2010 2015 2020

Gigabit Ethernet

Low Latency Applications

© Accellera Systems Initiative 4

• Stock Market traders have
million dollar financial incentive
to reduce latency

Low Latency Applications

© Accellera Systems Initiative 4

• Online advertisement agents have
only a few milliseconds to decide
what advertisement to upload

• Stock Market traders have
million dollar financial incentive
to reduce latency

HW
Network

Accelerators

Software
{Processor

Farm}

Social Media
Trends Feed

Advertisers Data
Feed

Client GPS Feed

Search Engine
Trends Feed

© Accellera Systems Initiative 5

Traditional Network Traffic Processing

© Accellera Systems Initiative 5

• Traditionally, network traffic has been processed using software the
NIC card interfaces the network/wire side through Ethernet
interface and software taking care of the packet processing

Traditional Network Traffic Processing

NIC

© Accellera Systems Initiative 5

• Traditionally, network traffic has been processed using software the
NIC card interfaces the network/wire side through Ethernet
interface and software taking care of the packet processing

Traditional Network Traffic Processing

• An Application Onload Engine Processes Data Using Dedicated
Hardware And Makes It Available To The Software Processor Farm

NIC

Device Driver
Kernel

DUT
NIC Chip

© Accellera Systems Initiative 6

• System consists
– Of a NIC chip

Application On Load Engine (AOE)
Hardware Accelerators for Data

– An FPGA running A “user defined
application or function”

• The NIC interfaces
– Through PCIe on server host side

– On the FPGA side it has 10G/40G
Ethernet interface

• FPGA’s interface on the network side is again 10G/40G
Ethernet interface

• The system performance is further increased by bypassing the
kernel

© Accellera Systems Initiative 7

• Design under test (DUT) is an AOE application code
programmed in FPGA
– It has Ethernet interface on both input as well as output side

The DUT And It’s Interfaces

• Host interface for configuration and device status monitoring

DUTEthernet
Interface

Host

Interface

Ethernet
Interface

Wire SideNIC Side

Verification Challenges

© Accellera Systems Initiative 8

Verification Challenges

© Accellera Systems Initiative 8

Protocol Stack

• Network protocol stack has traditionally been processed by software

– Traditionally, network hardware handled only MAC Layer protocol

– Sufficient to send Ethernet packets with randomized payload

• With Application On-load engine, hardware processes Layer3 and
Layer4 protocols as well

– Hardware Verification requires generation of higher layer packet
sequences as well

Verification Challenges

© Accellera Systems Initiative 8

Protocol Stack

• Network protocol stack has traditionally been processed by software

– Traditionally, network hardware handled only MAC Layer protocol

– Sufficient to send Ethernet packets with randomized payload

• With Application On-load engine, hardware processes Layer3 and
Layer4 protocols as well

– Hardware Verification requires generation of higher layer packet
sequences as well

• Software is tightly integrated with hardware accelerator

– The application software can reconfigure the AOE at run time

– To thoroughly test the interaction of software with hardware, it makes
sense to verify the hardware and software together

– Note that the hardware/software co-verification is not limited to HAL layer

– Depending on application, there could be a need to drive even higher
layer protocols (e.g.. session layer) as part of the stimulus

© Accellera Systems Initiative 9

Software Verification Challenges

© Accellera Systems Initiative 9

• And we think only verification team is busy working !

• Software team’s start developing software drivers and in some cases,
application software early in project cycle

• Since software team have “started earlier”, they would require a DUT
equivalent model which reacts to configuration and data applied on
device interfaces

• Actual design is replaced by A software model coded in C++ which
has multiple interfaces, for host access and data interface(s)

• Multi thread handling issues like race, starvation, deadlock & live-
lock

Software Verification Challenges

© Accellera Systems Initiative 10

Software Test Environment

© Accellera Systems Initiative 10

• QEMU Is A Hosted Virtual Machine Monitor: Used For Emulating NIC
Chip And It’s MIPS Processor

• TCP Socket Is Used For Data And Host Protocol Transfers

• TAP Interface Is Virtual Interface Allows Numerous Linux Utilities To
Be Hooked On To It, Like “Packeth”, “TCP Dump”, “TCP Replay” Etc.

• Since All The Interfaces Are Active Simultaneously
– Model Is Implemented As A Threaded Code Assigning Separate Posix Thread For

Each Interface

– TAP Interfaces Have To Be Continuously Monitored For Data, Otherwise Data
Will Be Lost

Software Test Environment

© Accellera Systems Initiative 12

Thread Architecture of Software Model

© Accellera Systems Initiative 12

There Are Two Kinds Of Perils Of Multithread Applications: Thread
Races And Thread Starvation

Avoiding Thread Races
– In Shared Memory Multithreaded Model, We Need To Protect Shared

Data From Being Accessed By Two Threads Simultaneously

– We Used “Mutex” Module From C++ Boost Library

– To Make Threads Efficient, A Separate Mutex Lock Is Created For Each
Shared Data Queue

Avoiding Thread Starvation
– Each Interface Thread Leaves A Notification After Putting Data On

Queue

– For Notifications, We Used Semaphores, C++ Does Not Provide A
Semaphore Implementation, But It Is Easy To Code

– To Avoid Thread Starvation, The Main Thread Needs To Service The
Queues In A Way That Ensures That All The Queues Get Its Attention

• To This End, We Just Gave More Priority To Threads That Have Less Traffic
Like The Control Plane Traffic

Thread Architecture of Software Model

Hooking Up Simulator With Multi-Threaded Interfaces

© Accellera Systems Initiative 13

• Simulator Runs On A Single Thread, So While It Executes
Simulation Code, C World Execution Is Put On Hold

– This Mechanism Cannot Handle Multi-Threaded Virtual
Interfaces Discussed Above

• Solution Is To Create An Multi-Thread Handler Which Takes
Care Of This

• Simulator Through DPI() Calls Attaches With The Main Thread
Which In Turn Spawns All Other Independent Threads

• Main Thread Waits For Notification And Then Locks Each
Queue One By One Looking For Transaction

• Mutex Locking : Uses Boost Mutex::scoped_lock -- C++ RAII --
Mutex Is Automatically Unlocked When The Scope Is Exited

Simulator Interfacing With Multi-Threaded Interfaces

© Accellera Systems Initiative 14

Cpp
Func

Cpp
Func

T=t1

T=t1

T=t++

Out Of Scope

Now

Executing SV

Normal DPI Based Flow

Lock & Look
For

Transactions

T=t1

T=t1

T=t++

Multi Threaded Simulator

Interfacing

Th1

Thn

Th1

Thn

Spawned Threads

Keep On Executing

Cpp
Func

Th1

Thn

SV Execution SV Execution

First Call;

Spawn

Threads

© Accellera Systems Initiative 16

UVM Based Block Verification

© Accellera Systems Initiative 16

• The C++ model that we used for software testing was reused (sans the
interfaces) for functional verification as A reference model

UVM Based Block Verification

© Accellera Systems Initiative 16

• The C++ model that we used for software testing was reused (sans the
interfaces) for functional verification as A reference model

UVM Based Block Verification

• Since the software interfaces are not involved, no concurrency is
involved

• Instead the software model now deploys adapters to handle the DPI
calls from UVM monitors

• The SystemVerilog simulator generates various randomized transaction
sequences

• A response is created by the software model and sent to scoreboard

© Accellera Systems Initiative 17

• TE consists of packet generator(s) UVC (sequencer, BFM & monitor)

• A predictor model generating the expected data based on configurations
and packet data

• Scoreboard which compares the expected data with actual data received
from the DUT output monitors

UVM Based Hardware Test Environment (TE)

DUTEthernet
Interface

Host Interface

Ethernet
Interface

Data
Streaming

UVC

Host
UVC

Cpp Model

Mon

Scoreboard

Mon

Data
Streaming

UVC

NIC Side Wire Side

© Accellera Systems Initiative 18

System Level Software Driven Hardware Verification Test
Environment

Generalized Co-verification Strategy
• Embedded software runs on QEMU

• Simulation runs on host machine

• Communication channels with packet generator/analyser is based on
virtual network interface (tap socks)

• Hardware simulation interaction with tap socks based on DPI
• Hardware simulator is the master thread – pull protocol for the

stimulus

System Level Software Driven Hardware Verification
Test Environment

• UVM TE Pulls Data And
Configuration Transactions
From Multi-Thread Handler
And Drives It On To The DUT
Buses

© Accellera Systems Initiative 19

• Multi-Thread Handler Takes
Care Of The Sockets And
Thread Handling
Mechanism

DPI Handler

Multi-Thread Handler

Streaming Data / Host Bus I/f

Streaming Data / Host Env.

DUT

Transaction Hierarchy

TE Transaction Layering

© Accellera Systems Initiative 20

DPI Handler

D
P

I Fu
n

ctio
n

 C
a

lls

Data Streaming
UVC

Request TLM FIFO

Response

Host UVC

Request TLM FIFO

Response

Sequencer

Sequencer

B
F

M
B

F
M

DUT

C
 A

d
a

p
ter

Virtual
Sequencer

Main
Sequence

Test Environment Detailed Diagram

TOP ENV.
Nomenclature

Put Port

Export

Analysis Port (Broadcast)

Data Streaming
UVC

Streaming Bus

Sequencer

B
F

M

Monitor

Monitor

Monitor

TE Transaction Layering

© Accellera Systems Initiative 21

• Functions of DPI handler
– Request Received From C-Adapter via DPI calls is pushed on to Avalon

sequencers via put port (blocking put)

– Response From Avalon streaming And Host monitors Is broadcasted via
analysis port implementations and send to C-adapter through DPI calls

• Virtual Sequencer is stitched to main sequence inside
test library
– Executing sequencer is virtual sequencer And it contains the instances of

MM sequencer & Streaming Data Sequencer .

• Connections inside top Environment
– TLM channels connects the “put ports” from dpi handler & “blocking get

port” inside both MM & Streaming sequencers

– All the sequencers from Avalon Environment are stitched to virtual
sequencers

– Monitors from MM & Streaming Environment are stitched to analysis
implementations inside dpi handler

Handling The C++ Style Log Generation And Merging
With Simulator Log

© Accellera Systems Initiative 22

Handling The C++ Style Log Generation And Merging
With Simulator Log

© Accellera Systems Initiative 22

• As part of the co-verification it was required that SW
messages gets dumped to regular simulation log file

• We took an approach where we implemented our own
ostream along with a stringbuf implementation.

• It takes care of UVM verbosity

• The sync function of the stringbuf internally used vpi_printf to
output the stream into the simulation log file

– Details can be found in the paper

Conclusion

© Accellera Systems Initiative 23

Conclusion

© Accellera Systems Initiative 23

• HW – SW Co-verification Is On The Rise

• Thanks To DPI() Calls, Which Simplifies The Bridging Between
Discrete Event Simulator And Multithreaded Interfaces
Required For Real Time Software Verification

• Synchronization Techniques Amongst The Threads In Order To
Avoid Pit Holes Of Multi-Threaded Environment

• Re-use Of Legacy C Models For Score Boarding At Multiple
Levels Of Hierarchy

• Seamless Environment For Software Developer & Hardware
Verification

• Novel Technique To Redirect C++ I/O Streams To The
Simulation Generated Log File

Questions

© Accellera Systems Initiative 24

