

Smart TSV Repair Automation in 3DIC Designs Subramanian R, Senior Staff Engineer, SSIR Naveen Srivastava, Senior Staff Engineer, SSIR Jyoti Verma, Associate Director, SSIR Sekhar Dangudubiyyam, Associate Director, SSIR

Agenda

HORIZONTAL INTEGRATION (2.5D)

X-CUBE (3DIC) (VERTICAL INTEGRATION)

- 3DIC is most prominent technology advancement in Semiconductor Industry
- Offers Low latency, Higher bandwidth and package density
 - Shorter inter-connect lengths
- Heterogeneous Die Integration

3DIC LOGIC DIEs

Power TSV Carries power from bottom die to upper dies

- Catastrophic
- Impacts the yield directly

Signal TSV Control and Data Signal TSVs between Dies

- Limits the design functionality (Hang situation, Integrity failures)
- Control Signal TSV \rightarrow Hang situation Timeout
- Data Signal TSV \rightarrow Integrity failures CRC, ECC, Parity issues

Input/Output/In-Out pads from Bottom $\leftarrow \rightarrow$ Top

- Impacts functionality stacked dies in certain ways
- Interrupt propagation
- External Ref clock stuck

	Fault Metrics				Fault Classification			
BLK	Groups	No. of TSVs per group	No. of Faults	Fault Spectrum	Ctrl Path	Data Path	LPI	
BLK A (Die to Die)	965	18	34740	5.56%	10422	5211	1737	
3LK B (Memory Access)	554	32	35456	3.13%	5318	10637	1773	
3LK C (Other IPs)	298	36	21456	2.78%	2146	7510	1073	

Verification Challenges

Automation - Concept

- Fully automated Sequences/APIs
- Embedded functional coverage instrumentation
- Random/Directed-random faults selection and OTP repair packets selection
- APIs for further writing custom test scenarios
- Test case Pruning with coverage-aware stimuli generator

TSV Connectivity

- OTP Repair signature connectivity
- TSV connectivity between dies

TSV Connectivity

- As can be seen from the above snapshot, the Y output at the Driver side in TOP die driver_grp1 is received at the A input of receiver_grp1 in BOT die.
- The pattern sent are AA, 55, FF and Random data

Fault Injection, Repair

TSV Lines

TSV Fault

Fault Injection, Repair

Embedded Functional Coverage

Faulty lines	 This coverpoint is used to make sure all the TSV lines are checked for Fault Injection for both stuck- at-0 and stuck-at-1
Signature based Repair check	• This coverpoint covers the TSV line repair based on the control signals and the Repair Signature for all the BLKs which are pre-loaded in OTP. This gives the complete coverage with the combination of TSV line and its control signal for Repair enable and the repairing of the same based on Signature.
Fault pattern	 Additional coverpoint is to check the fault pattern being injected with 0xAA, 0x55 and 0xFF patterns being the bins.

Results – Test cases, Sim Time

	Conve	ntional App	oroach	Smart			
BLK	No. of Testcases to run	Avg. run time per testcase (in mins)	Total Time (in mins)	No. of Testcases to run	Avg. run time per testcase (in mins)	Total Time (in mins)	Reduction in time
BLK A (Die to Die)	952	15	14280	224	12.5	2800	80.39%
BLK B (Memory Access)	1236	30	37080	383	19	7277	80.37%
BLK C (Other IPs)	4475	22	98450	1256	16	20096	79.59%

Results – Test cases, Sim Time

Results – Coverage

Faulty TSV bins Covergroups **TSV Line bins** Overall Average Grade 🔺 🎚 DK_DRV1 Overail Average Grade Score g Fline[64'h0000000000000000] 1/1(100%) 2880 ✓ 100% R TsvLines[0] ✓ 100% 1/1(100%) 80 🔺 🏭 u TSV DK COV Fline[64'h00000000000000001] ✓ 100% 1/1(100%) 70 B TsvLines[1] ✓ 100% 1/1(100%) 80 Fline[64'h0000000000000002] ✓ 100% 1/1(100%) 120 TsvLines[2] ✓ 100% 1/1(100%) 80 🖌 🖺 u TsvRepairCoverage ✓ 100% Fline[64'h0000000000000003] 1/1(100%) 120 100% 🛓 TsvLines[3] ✓ 100% 1 / 1 (100%) 80 Fline[64'h00000000000000041 ✓ 100% 1/1(100%) 120 -s TsyLines[4] ✓ 100% 1/1(100%) 80 Fline[64'h00000000000000005] ✓ 100% 1/1(100%) 120 📑 TsvLines[5] 100% ✓ 100% 1/1(100%) 80 💾 repair R Fline[64'h00000000000000006] ✓ 100% 1/1(100%) 120 🛃 TsvLines[6] ✓ 100% 1/1(100%) 80 Fline[64'h00000000000000007] ✓ 100% 1/1(100%) 120 _s TsvLines[7] ✓ 100% 1/1(100%) 80 📙 faultytsv ✓ 100% Fline[64'h000000000000000081 ✓ 100% 1/1(100%) 120 🔄 TsvLines[8] ✓ 100% 1/1(100%) 80 ✓ 100% 1/1(100%) 120 🛓 TsvLines[9] ✓ 100% 1/1(100%) 80 Fline[64'h0000000000000000a] ✓ 100% 1/1(100%) 120 A I DK DRV2 🛃 TsvLines[10] ✓ 100% 1/1(100%) 80 # Fline[64'h000000000000000b] ✓ 100% 1/1(100%) 120 B TsvLines[11] ✓ 100% 1/1(100%) 80 ✓ 100% 1/1(100%) 120 TsvLines[12] ✓ 100% 1/1(100%) 80 🔺 🎩 u TSV DK COV ✓ 100% 1/1(100%) 120 TsvLines[13] 100% 1 / 1 (100%) Fline[64'h0000000000000000] 1/1(100%) 120 80 ✓ 100% TsvLines[14] ✓ 100% 1/1(100%) 80 Fline[64'h0000000000000000] 100% 1/1(100%) 120 🔺 🖺 u TsvRepairCoverage ✓ 100% R Fline[64'h0000000000000010] TsvLines[15] 1/1(100%) ✓ 100% 1/1(100%) 120 ✓ 100% 80 Fline[64'h0000000000000011] ✓ 100% 1/1(100%) 120 B TsvLines[16] ✓ 100% 1/1(100%) 80 💾 repair ✓ 100% Fline[64'h0000000000000012] 1/1(100%) 120 ✓ 100% R TsvLines[17] ✓ 100% 1/1(100%) 80 Fline[64'h000000000000013] ✓ 100% 1/1(100%) 120 📲 TsvLines[18] ✓ 100% 1 / 1 (100%) 80 g Fline[64'h000000000000014] 120 ✓ 100% ✓ 100% 1/1(100%) 📙 faultytsv 📑 TsvLines[19] ✓ 100% 1/1(100%) 80 e Fline[64'h0000000000000015] ✓ 100% 1/1(100%) 120 R TsyLines[20] ✓ 100% 1/1(100%) 80 Fline[64'h0000000000000016] 1/1(100%) 120 ✓ 100% 🛃 TsvLines[21] ✓ 100% 1/1(100%) 80 🔺 🎩 DK DRV3 Fline[64'h0000000000000017] 100% 1/1(100%) 120 Reg TsyLines[22] ✓ 100% 1/1(100%) 80 Fline[64'h0000000000000018] ✓ 100% 1/1(100%) 121 _____ TsvLines[23] 1 / 1 (100%) ✓ 100% 80 1/1(100%) 121 R Fline[64'h0000000000000019] ✓ 100% - TsyLines[24] ✓ 100% 1/1(100%) 🔺 🎚 u_TSV_DK_COV 80 Fline[64'h000000000000001a] 1/1(100%) 123 ✓ 100% 📑 TsvLines[25] ✓ 100% 1/1(100%) 80 Fline[64'h000000000000001b] ✓ 100% 1 / 1 (100%) 121 🛃 TsvLines[26] ✓ 100% 1/1(100%) 80 🖌 🖺 u_TsvRepairCoverage 100% Fline[64'h00000000000001c] ✓ 100% 1 / 1 (100%) 122 STsvLines[27] ✓ 100% 1/1(100%) 80 Fline[64'h00000000000001d] 134 ✓ 100% 1 / 1 (100%) 📑 TsvLines[28] ✓ 100% 1/1(100%) 80 g Fline[64'h000000000000001e] ✓ 100% 100% 1 / 1 (100%) 136 💾 repair 📑 TsvLines[29] ✓ 100% 1/1(100%) 80 R Fline[64'h000000000000001f] ✓ 100% 1/1(100%) 160 🛃 TsvLines[30] 1/1(100%) ✓ 100% 79 ✓ 100% 1/1(100%) 233 📙 faultytsv ✓ 100% 🖪 TsvLines[31] 1/1(100%) ✓ 100% 80 Fline[64'h0000000000000021] ✓ 100% 1 / 1 (100%) 317 😅 TsvLines[32] ✓ 100% 1/1(100%) 76 Fline[64'h0000000000000022] ✓ 100% 1 / 1 (100%) 1229 Tsyl ines[3 100 1/1(1009

Conclusion & Future Scope

- Generic Smart TSV Testbench Automation (Re-use)
- Smart Test case selection (RTL & GLS) and overall TAT reduction
- Early bug detection
- Embedded coverage groups Test case Pruning
- Power Analysis with TSV faults (SA0, SA1)

Q&A

Thank You

