Smart TSV Repair Automation in 3DIC Designs

Subramanian R, Senior Staff Engineer, SSIR
Naveen Srivastava, Senior Staff Engineer, SSIR
Jyoti Verma, Associate Director, SSIR
Sekhar Dangudubiyyam, Associate Director, SSIR
Agenda

Introduction
Problem Statement
Smart TSV Automation
Results
Conclusion & Future Scope
Introduction

• 3DIC is most prominent technology advancement in Semiconductor Industry
• Offers Low latency, Higher bandwidth and package density
 • Shorter inter-connect lengths
• Heterogeneous Die Integration
Problem Statement
3DIC LOGIC DIES

Faulty TSVs & Impact

2. Power TSV
Carries power from bottom die to upper dies
- Catastrophic
- Impacts the yield directly

Signal TSV
Control and Data Signal TSVs between Dies
- Limits the design functionality (Hang situation, Integrity failures)
- Control Signal TSV → Hang situation – Timeout
- Data Signal TSV → Integrity failures – CRC, ECC, Parity issues

Pad TSV
Input/Output/In-Out pads from Bottom ↔ Top
- Impacts functionality stacked dies in certain ways
 - Interrupt propagation
 - External Ref clock stuck

Fault Metrics

<table>
<thead>
<tr>
<th>BLK</th>
<th>No. of TSVs per group</th>
<th>No. of Faults</th>
<th>Fault Spectrum</th>
<th>Ctrl Path</th>
<th>Data Path</th>
<th>LPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK A (Die to Die)</td>
<td>965</td>
<td>18</td>
<td>34740</td>
<td>5.56%</td>
<td>10422</td>
<td>1737</td>
</tr>
<tr>
<td>BLK B (Memory Access)</td>
<td>554</td>
<td>32</td>
<td>35456</td>
<td>3.13%</td>
<td>5318</td>
<td>1773</td>
</tr>
<tr>
<td>BLK C (Other IPs)</td>
<td>298</td>
<td>36</td>
<td>21456</td>
<td>2.78%</td>
<td>2146</td>
<td>1073</td>
</tr>
</tbody>
</table>
Smart TSV Automation
Verification Challenges

- Multitude number of tests to cover all TSVs (Functional & Gate Sims)
- Repair Signature generation
- Connectivity of TSVs across logical dies
- A Bug escape can lead to potential issues
- Coverage closure
• Fully automated Sequences/APIs
• Embedded functional coverage instrumentation
• Random/Directed-random faults selection and OTP repair packets selection
• APIs for further writing custom test scenarios
• Test case Pruning with coverage-aware stimuli generator
TSV Connectivity

- OTP Repair signature connectivity
- TSV connectivity between dies
As can be seen from the above snapshot, the Y output at the Driver side in TOP die `driver_grp1` is received at the A input of `receiver_grp1` in BOT die.

The pattern sent are AA, 55, FF and Random data.
Fault Injection, Repair

Randomization of Parameters

Fully randomized stimulus to the Design

Signature Pattern Generation

OTP

BLK A Repair Signature – 0x10826d828201c
BLK B Repair Signature – 0x11f0521821595
BLK C Repair Signature – 0x2fc0e04a0ea280830f96c6f12811

Random Fault Generation

OTP Signature Load

IP1 Reset

IP1 OTP Repair

IPn Reset

IPn OTP Repair

IP Data traffic with TSV faults and Repair
Fault Injection, Repair

- BOT DIE DRV Signals
- TOP DIE RCV Signals
- Fault Repair Bit Position
- Fault Repair Enable Signal
- Stuck at 1 fault seen at Y w.r.t A
- Fault Detected at RCV side
- Fault repaired and can be seen at Y signal of RCV

Fault Injection, Repair
Embedded Functional Coverage

- **Faulty lines**: This coverpoint is used to make sure all the TSV lines are checked for Fault Injection for both stuck-at-0 and stuck-at-1.

- **Signature based Repair check**: This coverpoint covers the TSV line repair based on the control signals and the Repair Signature for all the BLKs which are pre-loaded in OTP. This gives the complete coverage with the combination of TSV line and its control signal for Repair enable and the repairing of the same based on Signature.

- **Fault pattern**: Additional coverpoint is to check the fault pattern being injected with 0xAA, 0x55 and 0xFF patterns being the bins.
Results & Future Scope
<table>
<thead>
<tr>
<th>BLK</th>
<th>Conventional Approach</th>
<th>Smart TB Architecture</th>
<th>Reduction in time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Testcases to run</td>
<td>Avg. run time per testcase (in mins)</td>
<td>Total Time (in mins)</td>
</tr>
<tr>
<td>BLK A (Die to Die)</td>
<td>952</td>
<td>15</td>
<td>14280</td>
</tr>
<tr>
<td>BLK B (Memory Access)</td>
<td>1236</td>
<td>30</td>
<td>37080</td>
</tr>
<tr>
<td>BLK C (Other IPs)</td>
<td>4475</td>
<td>22</td>
<td>98450</td>
</tr>
</tbody>
</table>
Results – Test cases, Sim Time

NO. OF TESTCASES TO RUN

- **Conventional Approach**
 - BLK A (Die to Die): 952
 - BLK B (Memory Access): 1236
 - BLK C (Other IPs): 224
- **Smart TB Architecture**
 - BLK A (Die to Die): 4475
 - BLK B (Memory Access): 383
 - BLK C (Other IPs): 1256

TOTAL TIME (IN MINS)

- **Conventional Approach**
 - BLK A (Die to Die): 14280
 - BLK B (Memory Access): 37680
 - BLK C (Other IPs): 7277
- **Smart TB Architecture**
 - BLK A (Die to Die): 20096
 - BLK B (Memory Access): 2000
 - BLK C (Other IPs): 2000
Results – Coverage

<table>
<thead>
<tr>
<th>Covergroups</th>
<th>Faulty TSV bins</th>
<th>TSV Line bins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covergroups</td>
<td>Faulty TSV bins</td>
<td>TSV Line bins</td>
</tr>
<tr>
<td>DK_DRV1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_Tsv,DK_COV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_TsvRepairCoverage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>repair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>faultytsv</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>DK_DRV2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_Tsv,DK_COV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_TsvRepairCoverage</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>repair</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>faultytsv</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>DK_DRV3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_Tsv,DK_COV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>u_TsvRepairCoverage</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>repair</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>faultytsv</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion & Future Scope

• Generic Smart TSV Testbench Automation (Re-use)
• Smart Test case selection (RTL & GLS) and overall TAT reduction
• Early bug detection
• Embedded coverage groups – Test case Pruning
• Power Analysis with TSV faults (SA0, SA1)
Q&A
Thank You