
Simulation Time Federation

Director, Qualcomm France SARL.
Mark Burton

Staff Engineer, Qualcomm Germany GmbH.
Alwalid Salama

Staff Engineer, Qualcomm Germany GmbH.
Mahmoud Kamel

“What time is it, Eccles?”

“Err, Just a minute. I, I’ve got it
written down 'ere on a piece of
paper”

config statustime

QEMU

Matlab
Engine model

Carla environment
model

Silkit

SystemC

FMI/FMU

Python
Sensor

Accellerator

Camera Model

NOC/Bus
Ethernet

Ethernet

steering
i2c

SPI

VirtMSG/
vsock/
virtnet?

QNN
LIDAR

Adaptive
AUTOSAR

re-
package

someip

connec
tivity

Simulation Federation

Connecting to the outside world

Topology

Time Sync

Config/Control

Status (Simulation state)

Data

This talk

Connectivity Interfaces

Single time interface
Implemented using Zenoh

Goals

Prove sync can work over a Zenoh
interface

Show how to integrate with different
sync algorithms

Sync algorithms

Steppers
Central controller

“Do step” – and wait for everybody
to complete

Watchers
Central time source

Everybody should do their best to
be in sync

Talkers
Each node broadcasts it’s time

(window) along with all
communication

Each node should do their best to
stay in sync with it’s neighbours

Implementing nodes as “talkers” allows them to operate within
a central controller (either time, or stepper based)

• Between any two simulators, simply exchange time windows
 {From Time, To Time}
• Always try to advance to the “from” time,
• Try not to advance beyond the “to” time
• When you arrive at the “to” time (or at any point), send a new

window to the other side.

• Can be used to handle FMI/FMU, Silkit, SystemC, EDA247, etc.

Time Sync: From Time To Time

QEMU

Goals

Use Instruction
counts to better

approximate
time, as seen by

each CPU.
(”fix” icount’s
‘warped’ time
mechanism)

Allow different
CPUs to operate

at different
Instructions-Per-

Second

Maintain some
synchronization
between CPUs.

Don’t worry (too
much) about
determinism
Work with

MTTCG

Use the TCG
Plugin API.

Proposed “multi-CPU icount”

CPU1

CPU2

QEMU time

Real Clock “warp”

Choose 1 CPU to be the owner of “time” at any one time. Advance QEMU time as that CPU (alone) advances

(Note, in principle this is also deterministic)

Proposed “multi-CPU icount”

CPU1

CPU2

Real Clock “warp”

Choose 1 CPU to be the owner of “time” at any one time. Advance QEMU time as that CPU (alone) advances

(Note, in principle this is also deterministic)

Idle/Resume Callback (TCG plugin)

QEMU time

A quantum (or 2) from QEMU time
synchronisation

3

time

One CPU is the “active” CPU, it determines QEMU time
Golden rules:
1. Only a cpu can pause itself.
2. any cpu can resume any other cpu.

Q
EM

U
 T

im
e

02

"Active" cpu running

"Active" cpu paused

Other cpu running

Other cpu paused

1 quantum

1

cpu 1 will pause
itself, since cpu 2 is
more than one
quantum behind.

1 quantum1 quantum

A quantum (or 2) from QEMU time
synchronisation

0

time

One CPU is the “active” CPU, it determines QEMU time
Golden rules:
1. Only a cpu can pause itself.
2. any cpu can resume any other cpu

Q
EM

U
 T

im
e

32

"Active" cpu running

"Active" cpu paused

Other cpu running

Other cpu paused

1 quantum

1

cpu 3 will pause
itself, since it's
in front.

1 quantum1 quantum

A quantum (or 2) from QEMU time
synchronisation

0

time

One CPU is the “active” CPU, it determines QEMU time
Golden rules:
1. Only a cpu can pause itself.
2. any cpu can resume any other cpu

Q
EM

U
 T

im
e

32

"Active" cpu running

"Active" cpu paused

Other cpu running

Other cpu paused

1 quantum

1

cpu 1 will resume again,
since there is no cpu with
more than 1 quantum
behind.

1 quantum1 quantum

External window handling

0

time

Q
EM

U
 T

im
e

32

"Active" cpu running

"Active" cpu paused

Other cpu running

Other cpu paused

1 quantum

1

1 quantum1 quantum

From time To time
The active CPU will
Pause if it exceeds
the “to” window

Part 3: Sync with the outside world

• Set a window on the “Active CPU”
• Stop the active CPU if it advances beyond the front of the

window
• Each “Quantum”, inform the outside world of our time

(done in the QEMU get time callback)

• In short – control “just” the active CPU, hence, only
consider “QEMU time”.

• Plugin provides single reflexive interface “sync_window”
which takes a time window.

QEMU

Plugin

Sync(window)

Results (9 out of 10 cats like it)

• Making use of the TCG API to manage time is a ~ 13% performance
hit due to the scoreboard callbacks etc over normal ”icount” mode.
(single TCG CPU running coremark)

Icount mode in MTTCG – what's not to like?

SystemC

Goals

Allow parts of
SystemC to be

parallelised
Reduce the single thread

constraints for specific
modules

Maintain single name
hierarchy

Allow communication
and events

Flexibly synchronise

1. Make sim context thread local
2. Make sure events are handled in the

right sim context
3. Fix all the bugs…

4. SC_PARALLEL(your_module,
sync_algorithm)

5. BUT What about time synchronization!

Parallel SystemC : The Plan !

Observer Event

• An event which fires ONLY when time passes it

• Time will not advance until there is a future event

Sc_time

Observer Event

• An event which fires ONLY when time passes it

• Time will not advance until there is a future event

Sc_time

Observer Event

• An event which fires ONLY when time passes it

• Time will not advance until there is a future event

Sc_time

Handling a window in SystemC
From To

Normal event:
Advance time (as
quickly as possible) to
this event

Observer event:
Advance time to this event only
if there are other things driving
the simulation forward

Sync Algorithms?

From/to window

From/to window

To = + 1 quantum

To = “next event”

Other things we had to change in SystemC

Move simcontext to be
thread local

01
Redirect all event
notifications to happen
on the “target”
simcontext

02
Make b_transport to
execute on the ”target”
simcontext

03
Provide a wrapper
around an sc_module to
run on a separate thread

04

Results (9 out of 10 cats like it)

Parallel SystemC – you kidding me, of course all cats like it!

All together!

QEMU

SystemC

Zenoh

SystemC

SystemC

SystemC <-> SystemC
• New Observer Event
• Parallel SystemC (multiple sim contexts)

SystemC <-> QEMU
• New TCG scoreboard Plugin
• Sync between CPUs
• Works with MTTCG

SystemC <-> Zenoh
• POC for many different simulation backbones

Questions

Come to SCED to discuss !

