
Scalable agile processor verification using SystemC
UVM and friends

Eyck Jentzsch, MINRES Technologies GmbH

Agenda

• Quick Introduction into Universal Verification Methodology
Basic concepts of UVM

• UVM in SystemC
Implementation of the UVM concepts in SystemC/C++

• Example of a UVM-SystemC testbench for processor verification
Use of UVM-SystemC (and friends) in a RISC-V core verification
environment

UVM Introduction
Just a quick one

UVM Overview

• A library of base classes for building testbench components (Agent,
Sequencer, Driver, Monitor, Scoreboards, Environment class etc)

• A factory for constructing objects and substituting objects

• Verification phases for synchronizing concurrent processes

• A reporting mechanism for a consistent way of printing and logging
results

• Transaction Level Modeling (TLM) for communication between
verification components

• Macros to semi-automate generation of required UVM code.

https://www.asictronix.com/monitors-and-agents-in-uvm/

UVM Class Hierarchy

Testbench Env

UVM Testbench Structure

Initiator Env

Agent

Driver

Sequencer

Monitor

Interface

Target Env

Agent

Driver

Sequencer

Monitor

Interface

DUT

Scoreboard

Functional Coverage

Virtual Sequencer

UVM Simulation Phases

• build_phase
instantiate all testbench objects using the factory

• connect_phase
connect ports and signals of the testbench

• run_phase
simulate the DUT and the stimulus

• report_phase
collect the results of the simulation and report them

References

• UVM User Guide
https://accellera.org/images/downloads/standards/uvm/uvm_users_
guide_1.2.pdf

• UVM Reference Manual
https://accellera.org/images/downloads/standards/uvm/UVM_Class_
Reference_Manual_1.2.pdf

• UVM Library
https://accellera.org/images/downloads/standards/uvm/UVM-
18002-2020-20tar.gz

https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM-18002-2020-20tar.gz
https://accellera.org/images/downloads/standards/uvm/UVM-18002-2020-20tar.gz

UVM in SystemC

Libraries in a UVM-SystemC environment

• UVM-SystemC

• FC4SC

• CRAVE

• SCV

UVM-SystemC

• Open source C++ and SystemC based class library developed to improve
the structure and reusability of the verification environments

• Compatible with IEEE Std 1666-2011

• Provides common APIs, which are supported by the major simulators

• Targets Coverage Driven Verification (CDV) with automated stimulus
generation, independent result checking and coverage collection

• Allows reuse of tests and test benches across verification and validation
platforms

UVM-SC Current State (I)

• Component classes to build the agents, sequences, drivers, etc. that
comprise UVCs.

• UVCs are connected into testbenches with test and virtual sequences.

• Configuration and factory mechanisms

• Simulation control through phasing and objection handling.

• Print, compare, messaging for data management and debugging

UVM-SC Current State (II)

• In development (Beta 5)
• Commandline processor, barrier and heartbeat missing

• Constrained randomization is in discussion with the Accellera SCV
standard and a supplemental constraint solver (CRAVE) as possible
solutions.

UVM-SC Layered Architecture

• The top-level (e.g. sc_main) contains the test(s),
the DUT and its interfaces

• The DUT interfaces are stored in a configuration
database, so it can be used by the UVCs to connect
to the DUT

• The test bench contains the UVCs, register model,
adapter, scoreboard and (virtual) sequencer to
execute the stimuli and check the result

• The test to be executed is either defined by the test
class instantiation or by the member function
run_test

UVM-SC Layered Architecture

Phases of Elaboration and Simulation

• UVM-SystemC supports the 9 common phases and the (optional) refined
runtime phases

• Objection mechanism supported to manage phase transitions

• Multiple domains can be created to facilitate execution of different concurrent
runtime phase schedules

• UVM-SystemC
phases made
consistent with
SystemC phases

Randomization: CRAVE

• Constrained RAndom Verification Environment

• Syntax and semantics follow closely SystemVerilog IEEE 1800 std

• Random objects

• Random variables

• Hard/soft constraints

• Efficient constraint solvers

• MIT license

CRAVE Architecture

Constraint Partitioner

C++ Constraint Specification

Intermediate Representation
(Constrained Objects)

Pre-generation Analysis

Generation

Post-generation Analysis

Multi-solver

backend

SMT Solvers

BDD Solver

Soft Constraint Analyzer

Distribution Solver

Solver Parallelizer

Constraint Debugger

Coverage Analyzer

Randomization using CRAVE – Example
struct sysc_cont : public crv_sequence_item {

crv_variable<sc_int <5>> x{ "x" };
crv_variable<sc_uint<6>> y{ "y" };
crv_variable<sc_bv <7>> z{ "z" };

sc_uint<5> t = 13;

crv_constraint constr{ "constr" };

sysc_cont(crv_object_name) {
constr = { dist(x(), make_distribution(range<int>(5, 8))), y() > 0, y() % reference(t) == 0, y() != y(prev),

(z() & 0xF) == 0xE };
}

};

Random variables

Constraint expression

distribution operatorsspecial operator

Special operators
• inside
• dist

• if_then
• if_then_else
• Foreach

• unique
• bitslice
• …

SystemC Datatypes

Coverage: FC4SC

• C++11 header only library:
• built from scratch, with no 3rd party library dependencies

• Based on IEEE 1800 - 2012 SystemVerilog Standard

• Features:
• Coverage model construction

• Coverage sampling control & options

• Runtime coverage queries

• Coverage database saving

FC4SC Elements

• Covergroup: encapsulates a set of coverpoints and crosses

• Coverpoint: defines
• an expression to be sampled

• a collection of bins containing values to be sampled

• optionally, a boolean expression which conditions sampling

• Cross: is the cartesian product of its member coverpoints’ bins.

FC4SC Example

class data_cvg : ​public covergroup {
public:

int value = 0;
int ​flags = 0;

CG_CONS(data_cvg) {}

COVERPOINT(int, values_cvp, value) {
​ // intervals are inclusive

bin<int>("low1", interval(1,6), 7),
bin<int>("med", interval(10,16), 17),
bin<int>("high", interval(20,26), 27)

};

COVERPOINT(int, flags_cvp, flags) {
bin<int>("zero", 0),
bin<int>("one", 1),
bin<int>("ten", 10),
illegal_bin<int>("illegal_config", 3),
ignore_bin<int>("uninteresting", 8)

};

// Cross (cartesian product) of the two
// coverpoints
auto ​valid_data_cross = cross<int,​int>(

this, &flags_cvp, &values_cvp);
};

Coverage Definition API: Overview

• Follows UCIS DB coverage data model
• Elements: bin, coverpoint, cross, covergroup

MINRES Technologies GmbH Confidential

Crossed out elements are not
currently
part of the implementation

Source: Unified Coverage Interoperability Standard (UCIS) v1.0

References

• UVM-SystemC Library
https://accellera.org/images/downloads/drafts-review/uvm-systemc-
1.0-beta5.tar.gz

• Crave Library
https://github.com/accellera-official/crave

• FC4SC Library
https://github.com/accellera-official/fc4sc

https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta5.tar.gz
https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta5.tar.gz
https://github.com/accellera-official/crave
https://github.com/accellera-official/fc4sc

UVM-SystemC Example
A testbench for processor family verification

TGC RISC-V Family

• Part of ‘The Good Folk Series’ (TGFS)
• Highly flexible, scalable and extendable
• Single issue in-order pipeline
• Standard configurations as starting points
• Easy combinations of features and options

• Different bus interfaces
• Interrupt controllers
• Processor caches
• Custom instructions
• Safety features (lockstep, GPRs parity bits, ECC)
• Security (physical memory protection)

Disclaimer

‚While this guide offers a set of instructions to perform one or more
specific verification tasks, it should be supplemented by education,
experience, and professional judgment. Not all aspects of this guide
may be applicable in all circumstances.‘

Universal Verification Methodology

(UVM) 1.2 User’s Guide

October 8, 2015

Single Source of Truth

• CoreDSL: Domain-specific language to model
processor cores at the level of their
instruction set architecture (ISA)

• Automatically generated:
• Accurate ISS reference model

• Configuration for random stimuli generation

• List of instructions for coverage collection

• Properties for formal verification

• Artifacts for toolchain compatibility

• Hardware for custom instructions

CoreDSL

• Open Source Specification & Frontend

• Contents:
• Architectural state

Implementation parameter definition
General purpose register file

Single register with attribute

• Instructions
Instruction name

Specification of instruction encoding

Functional behavior

• Simple definition of custom instructions
using C-like syntax

Core My32bitRISCVCore {

architectural_state {

unsigned int REG_LEN = 32;

unsigned int XLEN = 32;

register unsigned<XLEN> X[REG_LEN];

register unsigned<XLEN> PC [[is_pc]];

}

instructions {

LUI {

encoding: imm[31:12] :: rd[4:0] :: 7'b0110111;

behavior: if (rd != 0) X[rd] = imm;

}

}

}

Cross-Level TB Overview

• UVM-SystemC Testbench
• Seamless integration of

generated components
• Instruction Generator sends

random instructions to ISS
and RTL

• ISS behavior and state
compared with RTL results
in the Scoreboard

• TB operation modes:
• Pseudo-random instruction

generation with aging
based feedback

• Load and execute ELF file

CoreDSL generated Components

• Virtual sequencer:
• Instruction generator + ISS reference model

• Instruction generator dynamically adjusts instruction frequency
for optimized coverage

• Coverage aging mechanism speeds up coverage achievement

• Instruction accurate ISS model
• DBT-RISE infrastructure is the basis for the reference model

• Functional coverage monitor:
• Utilizes information from CoreDSL description to accurately track

and report coverage metrics

UVM-SystemC TB Agents

• iBus and dBus agents: sequencer +
driver
• Connected to the DUT through a virtual

interface (vif)

• The DUT initiates instruction fetches as
well as data bus accesses over vif

UVM-SystemC TB Agents

• vif enables communication without
being tied to a specific
implementation
• DUT can be exchanged without

changing the interface itself
• Simulation engine can be exchanged

• Verilator via SystemC wrapper and
Pin-Level adapter

• SystemVerilog Simulator via UVM
Connect

• Hybrid simulation with FPGA using
RAVEN

UVM-SystemC TB Agents

• Trace interface maps the internal state of the core
• Register values
• Program counter
• Traps

• The scoreboard analyzes and compares the iBus, dBus, and trace monitor
sequences against the reference.

Live Code Demo

Functional Coverage

• Coverage Monitor:
• Defines coverage for different instruction

types
• Coverpoints: coverage criteria for

instructions
• Parameters
• Dependencies
• Hazards

• Covergroups: Summarize coverage
information

• Functional coverage provides:
• Parameter toggling frequency
• Cross-coverage analysis
• Identification of data hazards

Live Code Demo

References

• CoreDSL
https://github.com/Minres/CoreDSL

• RISC-V ISA as CoreDSL:
https://github.com/Minres/RISCV_ISA_CoreDSL

• SystemC Components Library:
https://github.com/Minres/SystemC-Components

• PyUCIS:
https://github.com/fvutils/pyucis

• PyUCIS Viewer:
https://github.com/fvutils/pyucis-viewer

https://github.com/Minres/CoreDSL
https://github.com/Minres/RISCV_ISA_CoreDSL
https://github.com/Minres/SystemC-Components
https://github.com/fvutils/pyucis
https://github.com/fvutils/pyucis-viewer

Questions

	Standardabschnitt
	Folie 1: Scalable agile processor verification using SystemC UVM and friends
	Folie 2: Agenda

	UVM Intro
	Folie 3: UVM Introduction
	Folie 4: UVM Overview
	Folie 5: UVM Class Hierarchy
	Folie 6: UVM Testbench Structure
	Folie 7: UVM Simulation Phases
	Folie 8: References

	UVM in SystemC
	Folie 9: UVM in SystemC
	Folie 10: Libraries in a UVM-SystemC environment
	Folie 11: UVM-SystemC
	Folie 12: UVM-SC Current State (I)
	Folie 13: UVM-SC Current State (II)
	Folie 14: UVM-SC Layered Architecture
	Folie 15: UVM-SC Layered Architecture
	Folie 16: Phases of Elaboration and Simulation
	Folie 17: Randomization: CRAVE
	Folie 18: CRAVE Architecture
	Folie 19: Randomization using CRAVE – Example
	Folie 20: Coverage: FC4SC
	Folie 21: FC4SC Elements
	Folie 22: FC4SC Example
	Folie 23: Coverage Definition API: Overview
	Folie 24: References

	UVM-SystemC Testbench
	Folie 25: UVM-SystemC Example
	Folie 26: TGC RISC-V Family
	Folie 27: Disclaimer
	Folie 28: Single Source of Truth
	Folie 29: CoreDSL
	Folie 30: Cross-Level TB Overview
	Folie 31: CoreDSL generated Components
	Folie 32: UVM-SystemC TB Agents
	Folie 33: UVM-SystemC TB Agents
	Folie 34: UVM-SystemC TB Agents
	Folie 35: Live Code Demo
	Folie 36: Functional Coverage
	Folie 37: Live Code Demo
	Folie 38: References
	Folie 39: Questions

