DESIGN AND@TM

DV LDON

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Scalable agile processor verification using SystemC
UVM and friends

Eyck Jentzsch, MINRES Technologies GmbH

Agenda

e Quick Introduction into Universal Verification Methodology
Basic concepts of UVM

* UVM in SystemC
Implementation of the UVM concepts in SystemC/C++

* Example of a UVM-SystemC testbench for processor verification
Use of UVM-SystemC (and friends) in a RISC-V core verification
environment

IS INITIATIVE

2022

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

UVM Introduction

Just a quick one

SYSTEMS INITIATIVE

UVM QOverview

A library of base classes for building testbench components (Agent,
Sequencer, Driver, Monitor, Scoreboards, Environment class etc)

* A factory for constructing objects and substituting objects
* Verification phases for synchronizing concurrent processes

* A reporting mechanism for a consistent way of printing and logging
results

* Transaction Level Modeling (TLM) for communication between
verification components

* Macros to semi-automate generation of required UVM code.

2023

=ICATION ™

FEMS INITIATIVE

https://www.asictronix.com/monitors-and-agents-in-uvm/

uvm_report_handler

UVM Class Hierarchy

uvm_object

uvm_subscriber

uvm_report_object

uvm_component

/\

uvm_transaction

uvm_seqgence_item

uvm_sequence

uvm_test

uvm_agent

uvm_driver

uvm_scoreboard

uvm_env

uvm_sequencer

uvm_monitor

2023
DESIGN AND V! IFICATION™

DV

CONFERENCE AND EXHIBITION

= R R Ead | J B =

10 YEAR ANNIVERSARY

UVM Testbench Structure

Testbench Env

Virtual Sequencer

Initiator Env Target Env

Scoreboard
Sequencer H Sequencer

Functional Coverage

Driver Monitor Monitor Driver

Interface Interface

2023

DESIGN AND V FICATION ™

DV

CONFERENCE AND EXHIBITION

EMS INITIATIVE

10 YEAR ANNIVERSARY

UVM Simulation Phases

* build_phase
instantiate all testbench objects using the factory

e connect_phase
connect ports and signals of the testbench

* run_phase
simulate the DUT and the stimulus

* report_phase
collect the results of the simulation and report them

2023

“ICATION™

References

* UVM User Guide
https://accellera.org/images/downloads/standards/uvm/uvm users
guide 1.2.pdf

* UVM Reference Manual
https://accellera.org/images/downloads/standards/uvm/UVM Class
Reference Manual 1.2.pdf

* UVM Library
https://accellera.org/images/downloads/standards/uvm/UVM-
18002-2020-20tar.gz

1S INITIATIVE

https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
https://accellera.org/images/downloads/standards/uvm/UVM-18002-2020-20tar.gz
https://accellera.org/images/downloads/standards/uvm/UVM-18002-2020-20tar.gz

2022

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

UVM In SystemC

SYSTEMS INITIATIVE

Libraries in a UVM-SystemC environment

* UVM-SystemC
* FC4SC

* CRAVE

* SCV

UVM-SystemC

* Open source C++ and SystemC based class library developed to improve
the structure and reusability of the verification environments

 Compatible with IEEE Std 1666-2011
* Provides common APIs, which are supported by the major simulators

» Targets Coverage Driven Verification (CDV) with automated stimulus
generation, independent result checking and coverage collection

e Allows reuse of tests and test benches across verification and validation
platforms

IS INITIATIVE

UVM-SC Current State (I)

* Component classes to build the agents, sequences, drivers, etc. that
comprise UVCs.

* UVCs are connected into testbenches with test and virtual sequences.
* Configuration and factory mechanisms

e Simulation control through phasing and objection handling.

* Print, compare, messaging for data management and debugging

2023

—ICATION™

IVSTEMS INITIATIVE

UVM-SC Current State (I1)

* In development (Beta 5)
* Commandline processor, barrier and heartbeat missing

e Constrained randomization is in discussion with the Accellera SCV
standard and a supplemental constraint solver (CRAVE) as possible
solutions.

2023

“ICATION™

UVM-SC Layered Architecture

* The top-level (e.g. sc_main) contains the test(s),
the DUT and its interfaces

 The DUT interfaces are stored in a configuration
database, so it can be used by the UVCs to connect
to the DUT

* The test bench contains the UVCs, register model,
adapter, scoreboard and (virtual) sequencer to
execute the stimuli and check the result

* The test to be executed is either defined by the test
class instantiation or by the member function
run_test

top (sc_main)

Test

rw
I

config

Testbench (env)
Virtual
Sequencer Scoreboard
Sub- | Score- Sub-
Reg model scriber| | board scriber
A A
\ Adapter
'd ' ™
UpESH (env) UVC2 (env)
e ™ s 2
vwagent || | || agent
SEQ CONF : CONF
DRV MON MON
AN S S S
Y
Interface1 Interface2
N o 1) A —

DESIGN AND VI —ICATION™
C FERENCE AND EXHIBITION

UVM-SC Layered Architecture

@

(@)}

©

(1))

>

' 8

Functional [Sequencer] {Scoreboard]‘— =
. 5L

v . S

Command[Driver] [Monitor J [Monitor]—> T
A A A -~/

DUT

Signal

h AR
-~/

S‘ESTEHS INITIATIVE

Phases of Elaboration and Simulation

UVM common phases
| Pre run phase | Runtime phase | Post run phase |
[build Iconnect eoe S0S run 1extractl check I report I final]
* UVM'SyStemC (end of elaborat|om>/
phases made (start of_simulation UVM runtime phases D Top Down
consistent with pre-reset UL L L LT L L L [(] Bottom Up
SyStemC phases ‘ configure H main H shutdown ’

* UVM-SystemC supports the 9 common phases and the (optional) refined
runtime phases

* Objection mechanism supported to manage phase transitions

* Multiple domains can be created to facilitate execution of different concurrent
runtime phase schedules

DESIGN AND VI —ICATION™
C FERENCE AND EXHIBITION

Randomization: CRAVE

e Constrained RAndom Verification Environment

* Syntax and semantics follow closely SystemVerilog IEEE 1800 std
* Random objects

 Random variables

* Hard/soft constraints

* Efficient constraint solvers

* MIT license

2023

“ICATION™

CRAVE Architecture

Constraint Partitioner

Soft Constraint Analyzer

Distribution Solver

Solver Parallelizer

Constraint Debugger

Coverage Analyzer

C++ Constraint Specification

Intermediate Representation
(Constrained Obijects)

Pre-generation Analysis

Generation

Post-generation Analysis

-
-
g

Multi-solver
backend

[

[

DESIGN AND V! FICATION ™

DV

CONFERENCE AND EXHIBITION

= O Bad | N Bl B

10 YEAR ANDND

Randomization using CRAVE — Example

struct sysc _cont : public crv_sequence_item {

crv_variabld<sc _int <5>> x{ "x" };
crv_variable<sc_uint<6>> v{ "y" }; - Random variables
crv_variable<sc bv <7>> z{ "z" };

sc_uint<5> t = 13; \ SystemC Datatypes

crv_constraint constr{ "constr" };

sysc_cont(crv_object name) { Constraint expression
constr = { dist(x(), make_distribution(range<int>(5, 8))), y() > 0, y() % reference(t) == 0, y() != y(prev),

Z() & OxF) == OxE J; ~_ T 7

} ! \
}; special operator distribution operators
Special operators e if_then * unique
* inside if then_else e Dbitslice

e dist e Foreach .

DESIGN AND Q;N =

DV

CONFERENCE AND EXHIBITION

VSTEMS INITIATIVE

10 YEAR ANNIVERSARY

Coverage: FC4S5C

e C++11 header only library:

* built from scratch, with no 3rd party library dependencies
* Based on IEEE 1800 - 2012 SystemVerilog Standard

* Features:
* Coverage model construction
* Coverage sampling control & options
* Runtime coverage queries
* Coverage database saving

2023

“ICATION™

,:"pf,, :
SYSTEMS INITIATIVE

FCASC Elements

* Covergroup: encapsulates a set of coverpoints and crosses

e Coverpoint: defines
* an expression to be sampled
* a collection of bins containing values to be sampled
* optionally, a boolean expression which conditions sampling

* Cross: is the cartesian product of its member coverpoints’ bins.

2023

“ICATION™

-y =
§§S~TEM5 INITIATIVE

FC4SC Example

class data_cvg : public covergroup {

public:
int value = 0;
int flags = 0;

CG_CONS(data_cvg) {}

COVERPOINT(int, values_cvp, value) {
// intervals are inclusive
bin<int>("low1", interval(1,6), 7),
bin<int>("med", interval(10,16), 17),
bin<int>("high", interval(20,26), 27)

COVERPOINT(int, flags_cvp, flags) {
bin<int>("zero", 0),
bin<int>("one", 1),
bin<int>("ten", 10),
illegal_bin<int>("illegal config", 3),
ignore_bin<int>("uninteresting", 8)

// Cross (cartesian product) of the two

// coverpoints

auto valid_data_cross = cross<int,int>(
this, &flags_cvp, &values_cvp);

DV

CONFERENCE AND EXHIBITION

MS INITIATIVE

1D YEAR ANNIVERSARY

Coverage Definition APl: Overview

* Follows UCIS DB coverage data model

* Elements: bin, coverpoint, cross, covergroup Crossed out elements are not
.~ .- l currently
[UcIS. FOLSSCoPE] part of the implementation
" [on] l o ,
. UCIS_COVERPOINT |« — — -[UCIS_CROSS]
[UClS COVERGROUP JLLD[UCIE_GOVERINSTANCE] ’
- -
---------------- ~__[0n] oo [] (0]
N] (0] UCIS_DEFAULTBIN UCIS_CVGBIN
- ~. UCIS_IGNOREBIN
MIN L 2:n)] y - S~ o
l UCIS_COVERPOINT]-l: = = -[UCIS CROSS J
UCIS_ILLEGALBIN
I Source: Unified Coverage Interoperability Standard (UCIS) v1.0

References

 UVM-SystemC Library
https://accellera.org/images/downloads/drafts-review/uvm-systemc-

1.0-beta5.tar.gz

* Crave Library
https://github.com/accellera-official/crave

* FCASC Library
https://github.com/accellera-official/fc4sc

1S INITIATIVE

https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta5.tar.gz
https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta5.tar.gz
https://github.com/accellera-official/crave
https://github.com/accellera-official/fc4sc

2022

DESIGN AND VERIEICATION™

DVGCON

CONFERENCE AND EXHIBITION

UVM-SystemC Example

A testbench for processor family verification

SYSTEMS INITIATIVE

TGC RISC-V Family

s N\ ™

Embedded | | loT or edge

veems | piietons) o Part of “The Good Folk Series’ (TGFS)

é)

Lowareas | [5A * Highly flexible, scalable and extendable
power stages
L -)+ Single issue in-order pipeline
. |g=||g=a|| < Standard configurations as starting points
TEY] RV32IMC

capable

i | | * Easy combinations of features and options
* Different bus interfaces

.

7\

7

Tight TGC_D
wisw RaavC * Interrupt controllers
coupine e e Processor caches
(— * Custom instructions
frequncy 5 stages Safety features (lockstep, GPRs parity bits, ECC)
CLIC, PMP . . .
.) Security (physical memory protection)

. s\ v

2023

DESIGN AND VI “ICATION™

Disclaimer

,While this guide offers a set of instructions to perform one or more
specific verification tasks, it should be supplemented by education,
experience, and professional judgment. Not all aspects of this guide
may be applicable in all circumstances.’

Universal Verification Methodology
(UVM) 1.2 User’s Guide
October 8, 2015

2023

=ICATION ™

SYSTEMS INITIATIVE

Single Source of Truth

e CoreDSL: Domain-specific language to model
processor cores at the level of their
. . . Concolic testin
instruction set architecture (I1SA) frastruture:

¢ AutOmatlca”y generated. CoreDSL ‘m »| Virtual prototype

* Accurate ISS reference model
* Configuration for random stimuli generation
* List of instructions for coverage collection

* Properties for formal verification

Artifacts for toolchain compatibility
‘Hardware for custom instructions

> Compiler

Crossfunctional
Verification

L

Longnail / SCAIE-V

i

Core Generator

v

DESIGN AND VERIFICATION ™

EEEEEEEEEEEEEEEEEEEEEEE

7_,‘.'.',: - —
SYSTEMS INITIATIVE

1D YEAR ANNIVERSARY

CoreDSL

- Open Source Specification & Frontend Core My32bitRISCVCore ({

architectural state {

. Contents:

- Architectural state
Implementation parameter definition
General purpose register file
Single register with attribute

« Instructions

Instruction name

unsigned int REG_LEN = 32;

unsigned int XLEN = 32;

register unsigned<XLEN> X[REG LEN] ;

register unsigned<XLEN> PC [[is pc]];
}

instructions {

e . : : LUI {
Specification of instruction encoding
Functional behavior encoding: imm[31:12] :: rd[4:0] :: 7'b0110111;
- Simple definition of custom instructions behavior: if (rd != 0) X[rd] = imm;
using C-like syntax)

DESIGN AND Q;N =

DV

CONFERENCE AND EXHIBITION

EMS INITIATIVE

10 YEAR ANNIVERSARY

Cross-Level TB Overview

T sc_main
ikttt : | config |
* UVM-SystemC Testbench g | T
* Seamless integration of : pr—
generated components el e |
* Instruction Generator sends v || 7 o Busgent | || |2
ra r(\jdom instructions to ISS povden || Sommes] | L e [l o R iai
an RTL geneﬁtor | |
wi | :
* ISS behavior and state o
compared with RTL results e s | S Ty
in the Scoreboard bserer —ccuance 1B
. teE dBus Sequencer Driver > uif <
* TB operation modes: e | '
* Pseudo-random instruction i .
generanon with aging e " |52
ased feedback o [| 5, e Tal | [EF
. Coverage i
* Load and execute ELF file vonor | | L——| | —— |

DESIGN AND Q:’ON =

DV

CONFERENCE AND EXHIBITION

EMS INITIATIVE

1D YEAR ANNIVERSARY

CoreDSL generated Components

* Virtual sequencer: Sonerer
. CoreDSL
* Instruction generator + ISS reference model config
random
* Instruction generator dynamically adjusts instruction frequency nstruction
for optimized coverage with
. . . cove.rage
* Coverage aging mechanism speeds up coverage achievement _ g
!

CoreDSL

* Instruction accurate ISS model
 DBT-RISE infrastructure is the basis for the reference model -

reference
model

* Functional coverage monitor:
 Utilizes information from CoreDSL description to accurately track CorebsL

config

and report coverage metrics Functional

Coverage
Monitor

2023

DESIGN AND VI —ICATION™

AAAAAAAAAAAAAAAAAA

UVM-SystemC TB Agents

* iBus and dBus agents: sequencer +
driver

* Connected to the DUT through a virtual
interface (vif)

e The DUT initiates instruction fetches as
well as data bus accesses over vif

Cross-Level UVM TB

Q iBus Agent
iBus

éﬂEﬂJ
»| iBus Sequencer Driver

Y
Pin-Level
Adapter

:J‘:’FT A .
SYSTEMS INITIATIVE

DESIGN AND VI

2023

-ICATION ™

UVM-SystemC TB Agents

e vif enables communication without
being tied to a specific
implementation

 DUT can be exchanged without

changing the interface itself crohed TR i
* Simulation engine can be exchanged S_— iBus Agent i Ty
* Verilator via SystemC wrapper and _i;l,;{q Driver L. :§
Pin-Level adapter
e SystemVerilog Simulator viaUvmM | ———770707
Connect

* Hybrid simulation with FPGA using
RAVEN

e — ‘
-s?sTEHS INITIATIVE

2023

“ICATION™

UVM-SystemC TB Agents

* Trace interface maps the internal state of the core
* Register values
* Program counter
* Traps
* The scoreboard analyzes and compares the iBus, dBus, and trace monitor
sequences against the reference.

Cross-Level UVYM TB

coslis Scoreboard Trace UVC - UUM
config config _
db B4 RIL
i —
Fcuor:;cet:gnzl SO Core Trace — PEd out
48 Subscriber Monitor a
Monitor

DESIGN AND Q:’ON =

'SYSTEMS INITIATIVE

Live Code Demo

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION
= 0 IEad | J B=f =

10 YEAR ANNIVERSARY

Functional Coverage

* Coverage Monitor:

e Defines coverage for different instruction
types

 Coverpoints: coverage criteria for
instructions

e Parameters
* Dependencies
e Hazards

* Covergroups: Summarize coverage
information

* Functional coverage provides:
* Parameter toggling frequency
* Cross-coverage analysis
* |dentification of data hazards

SYSTEMS INITIATIVE

File
Name
» INST: SLLI
» INST: SRLI
» INST: SRAI
INST: ADD
» CVP: rd

4

» CVP:rsl
» CVP:rs2
» CVP: raw
» CVP: waw
« CVP: war
no
yes
» CROSS: rd rsl
» CROSS: rd_rs2
» CROSS: rs1 rs2
INST: SUB
INST: SLL
INST: SLT
INST: SLTU
INST: XOR
INST: SRL

v v T ¥ OF W

PyUCIS Viewer

Coverage
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
805157
52891
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%
100.00%

Status

Lo o B3

2023

DESIGN AND V FICATION ™

DV

CONFERENCE AND EXHIBITION

10 YEAR ANNIVERSARY

Live Code Demo

2023
DESIGN AND V! IFICATION ™

DV

CONFERENCE AND EXHIBITION
= 0 IEad | J B=f =

10 YEAR ANNIVERSARY

References

* CoreDSL
https://github.com/Minres/CoreDSL

* RISC-V ISA as CoreDSL:
https://github.com/Minres/RISCV ISA CoreDSL

e SystemC Components Library:
https://github.com/Minres/SystemC-Components

* PyUCIS:
https://github.com/fvutils/pyucis

* PyUCIS Viewer:
https://github.com/fvutils/pyucis-viewer

EEEEEEEEEEEEEEEEEEEEEEE

10 YEAR ANNIVERSARY

https://github.com/Minres/CoreDSL
https://github.com/Minres/RISCV_ISA_CoreDSL
https://github.com/Minres/SystemC-Components
https://github.com/fvutils/pyucis
https://github.com/fvutils/pyucis-viewer

Questions

2023
DESIGN AND V! IFICATION™

DV

CONFERENCE AND EXHIBITION
= R R Ead | J B =

10 YEAR ANNIVERSARY

	Standardabschnitt
	Folie 1: Scalable agile processor verification using SystemC UVM and friends
	Folie 2: Agenda

	UVM Intro
	Folie 3: UVM Introduction
	Folie 4: UVM Overview
	Folie 5: UVM Class Hierarchy
	Folie 6: UVM Testbench Structure
	Folie 7: UVM Simulation Phases
	Folie 8: References

	UVM in SystemC
	Folie 9: UVM in SystemC
	Folie 10: Libraries in a UVM-SystemC environment
	Folie 11: UVM-SystemC
	Folie 12: UVM-SC Current State (I)
	Folie 13: UVM-SC Current State (II)
	Folie 14: UVM-SC Layered Architecture
	Folie 15: UVM-SC Layered Architecture
	Folie 16: Phases of Elaboration and Simulation
	Folie 17: Randomization: CRAVE
	Folie 18: CRAVE Architecture
	Folie 19: Randomization using CRAVE – Example
	Folie 20: Coverage: FC4SC
	Folie 21: FC4SC Elements
	Folie 22: FC4SC Example
	Folie 23: Coverage Definition API: Overview
	Folie 24: References

	UVM-SystemC Testbench
	Folie 25: UVM-SystemC Example
	Folie 26: TGC RISC-V Family
	Folie 27: Disclaimer
	Folie 28: Single Source of Truth
	Folie 29: CoreDSL
	Folie 30: Cross-Level TB Overview
	Folie 31: CoreDSL generated Components
	Folie 32: UVM-SystemC TB Agents
	Folie 33: UVM-SystemC TB Agents
	Folie 34: UVM-SystemC TB Agents
	Folie 35: Live Code Demo
	Folie 36: Functional Coverage
	Folie 37: Live Code Demo
	Folie 38: References
	Folie 39: Questions

