
Tutorial: Scalable Virtual Pla1orms
for Automo6ve and Beyond

Introduc)on
Lukas Jünger, MachineWare GmbH

Agenda
• Session #1

• VCML: An Open-Source Framework for Building Scalable Virtual Platforms
• Lukas Jünger, MachineWare GmbH

• Session #2
• Trends in Software and Virtual Platforms
• Daniel Owens, Arm

• Session #3
• Integrating Virtual Platforms as Scalable Testbeds for Automotive Software
• Matthias Berthold, tracetronic GmbH

• Session #4
• Virtual Platforms for Embedded Fuzzing
• Chiara Ghinami, RWTH Aachen

Tutorial: Scalable Virtual Pla1orms
for Automo6ve and Beyond

Session #1: VCML: An Open-Source Framework for
Building Scalable Virtual Platforms

Lukas Jünger, MachineWare GmbH

Mo6va6on

• So#ware complexity ever increasing
• So#ware Defined Vehicle
• Integra5on points extremely complex

• So#ware problems lead to delays
• So#ware TCO high
• Fixing problems late is expensive (10-100x)

• Need: Be#er so(ware, earlier!

Virtual Prototyping

• Virtual Pla@orm: Full System Simula5on
• Execute unmodified target so#ware

• Indispensable in modern SW development
• Advantages over physical prototypes
• Available early
• Scalable deployment
• Full flexibility, deep introspec5on

☹

🙂

Building Virtual Pla1orms
Simulation Model Library Customer Software

Virtual Platform

CPU GPU Accel. DSP

CAN LIN UART PCIe

VirtIO USB Eth. …
CPU GPU PCIe USB Eth.

Scalability Challenge: Early Availability
• Requires model availability and integra5on
• Building (fast) models
• HW spec. availability and format

• IP-XACT, SAIL vs PDF, Excel
• Requires trained engineers (AI?)

• IntegraJng models from different sources
• Build & execu5on environments
• Model interfaces

• Func7onal: model input/output
• Non-func7onal: Configura7on, Control, Inspec7on

HW Specification

Model Development

VP Integration

HW Tests

Scalability Challenge: Performance

• Usability of VP is determined by performance
• SW execu5on in MIPS (Million Simulated Instruc5ons per Wall-Clock second)

• Performance / Accuracy trade-off
• Higher accuracy -> simulate more -> lower performance
• Accuracy requirement depends strongly on use case

• Difficult to define use case: ”simulate everything”

• IntrospecJon/profiling for all VP components

SystemC TLM-2.0
• IEEE standardized simulaJon

framework (1666-2023) in C++
• TLM extension for fast simula5on

• Focus on model interfaces,
virtual Jme keeping
• Missing
• Model internals (e.g. registers)
• Configura5on, Control, Inspec5on
• Interconnects (CAN, SPI, …)
• …

Virtual Platform

CPU GPU PCIe USB Eth.

CPU GPU PCIe USB Eth.

+

VCML
• SystemC-based VP toolkit
• Everything that’s missing in SystemC
• Free and open-source (Apache 2)

• github.com/machineware-gmbh/vcml

• Goals
• Training resource for newcomers

• machineware.de/vcml-community
• Open, scalable pla]orm for building

fast VPs and models
• “Ba_eries included” (examples,

documenta5on, support)

Accellera SystemC TLM-2.0

C++17

TLM
Protocols

Session
Interface

Debugger
Integration

Properties
Logging

&
Tracing

Registers

VCML

VCML Ecosystem
Standards/Interfaces

MachineWare VCML

Accellera SystemC TLM-2.0

Virtual Hardware MachineWare Tools 3rd Party Tools

VirtIO

ViPER

InSCight

VCML is a powerful open-source founda8on for building fast, scalable Virtual Pla=orms

VCML Session

Trends in Software and Virtual Platforms
Daniel Owens, Product Director, Arm

Trends in Software

The AI-Defined Vehicle

Software Controlled

PerceptionPlanning Action

AI

P R E S E N T
• Centralized/Zonal compute vs

distributed

• Modular system with LLMs
emerging

• Software defines the system,
orchestrates, OTA updates

F U T U R E
• Sophisticated AI models

pervasive

• AI central to vehicle innovation

• Software-Defined infrastructure
as foundation

P A S T
• Distributed ECUs, rule-based,

deterministic systems

• Not software-defined, but
software-controlled

© 2025 Arm. All rights reserved.

AI

Models

Software-Defined Vehicle Era AI-Defined Vehicle Era

Adjusts to environment and
driver behavior in real-time to
enhance safety. V2X
coordination.

Continuously improves
performance and efficiency
based on conditions.

Delivers personalized, voice-
driven control for a more
intuitive in-vehicle experience.

IVI

Example: Voice & App Interaction

Vehicle System Control

Example: Real-time Optimizations

Enabling Safer, Smarter Driver Experiences
New AI Models Underpin Driver Experiences of the Future

ADAS

Example: Intuitive Driving

“Play my playlist and order my usual
at Starbucks.”

“No passengers – Eco Drive
activated.”

“Switching to ‘City Mode’ for
enhanced awareness.”

© 2025 Arm. All rights reserved.

Industry Needs to Deliver the AI-Defined Vehicle Reality
More Complexity, More Demands on Vehicle Hardware and Software

on top of proven safety-capable,
secure compute foundations

scalable platforms to power AI
across diverse vehicle types and
use cases

for tech powering new driver
experiences

Scale AI Faster time to market Flexibility to innovate

© 2025 Arm. All rights reserved.

Significant Software Challenges for Automotive
Autonomous Vehicle Development Costs (USD)2

2 McKinsey, What’s Next for Autonomous Vehicles
3 McKinsey, Automotive software and electronics 2030

Validation Costs

Hardware Development Costs

Software Development Costs

Integration, verification and validation to consume 40% of
software budget in 20303

1 McKinsey, The case for an end-to-end automotive-software platform, January 16, 2020

Complexity is ballooning, while development
productivity is lagging1

© 2025 Arm. All rights reserved.

L3 Traffic Jam Pilot L3 Highway L4 Highway L4 Robotaxi Urban

The Arm Automotive Technology Stack
A Complex Landscape That Requires Collaboration

© 2025 Arm. All rights reserved.

The Arm Automotive Technology Stack
A Complex Landscape That Requires Collaboration

© 2025 Arm. All rights reserved.

Traditional: Serialized Technology Development Approach

Today: Reduced Time-to-silicon and Accelerated Software Development

Compressing Time to Market | Arm Innovation
Reducing Silicon and Software Development Timelines

Past Years: Arm Individual IP Development Approach with Virtual Prototyping

© 2025 Arm. All rights reserved.

Silicon

development

timeline 12
MONTHS

Reduced by

Virtual Prototyping + Ecosystem + Software reuse

C S S &

V I R T U A L

P L A T F O R M S H A R D W A R E D E S I G N

S O F T W A R E D E V E L O P M E N T

S Y S T E M I N T E G R A T I O N

Software development

accelerated by up to 2 years

I P & V I R T U A L

P L A T F O R M S H A R D W A R E D E S I G N

S O F T W A R E D E V E L O P M E N T

S Y S T E M I N T E G R A T I O N

I P A V A I L A B L E H A R D W A R E D E S I G N S O F T W A R E D E V E L O P M E N T S Y S T E M I N T E G R A T I O N

Trends in Arm-based Simulation

Evolving Arm Hardware Landscape

• Trends in cloud hardware

• Google Cloud, Microsoft Azure, AWS
hosting Arm servers

• Arm v9 now in the cloud

• Cost effective development and
automation

• Arm-native execution a reality

• ISA parity

• Expanding ecosystem
Cloud Native Software Development

© 2025 Arm. All rights reserved.

Accelerating vECU Development | Arm Native
Faster | Binary-Compatible | No Cross-Compilation | Near-Silicon Performance

References: adapted from prostep 2020 – Requirements for the Standardization of Virtual Electronic Control Units (V-ECUs)
*Runs production binary without Binary Translation or cross-compilation

© 2025 Arm. All rights reserved.

Host/Arm hardware

Level 0 Level 1 Level 2 Level 3 Level 4

Sym environment

**Complete vECU

native acceleration

Native execution on Arm host: No cross-compilation
High binary compatibility with physical target

~100x faster execution than
traditional binary translation: Full

native acceleration

Host/Arm compiled Target/Arm compiled

Production Code
of Application

Application +
Simulated Middleware

Application +
Production Middleware

Complete Production
Stack

Model-based
Algorithms



Production (source)Simulated Production (binary)Abstracted component

ISA Parity enables Seamless Cloud-to-Car Portability
Build Once, Run Everywhere

Accelerated Validation Pipeline
Use containers and virtual prototypes to validate
functional software continuously – earlier, faster

and cheaper.

Cloud/OnPrem Platform Car Platform

Build once, Test everywhere
The same artifacts run natively across the cloud and

vehicle edge.

True Native Execution, No cross-compilation

© 2025 Arm. All rights reserved.

Arm

Server IP

Identical Arm ISA

Arm

Automotive

Enhanced IP

virtual prototypes containers algorithms/libraries

Arm Fast Models

© 2025 Arm. All rights reserved.

Fast, accurate, f lexible
models of Arm CPUs,
Media and System IP

Complete programmer’s
view, including the most

complex Arm IP

Suitable for driver,
f irmware, RTOS and

embedded application
development

SystemC / TLM 2.0
compliant for platform

expansion

Fast Models – Important Enabler

• IP and integration validation
• Architecture Validation Suite/Device Validation Suite, ISS Compare, RAVEN

• Early software development (internal)
• Reference firmware (EDK2, SCP, Trusted Firmware, etc.)

• Platform for reference software
• Free of charge Fixed Virtual Platforms (FVPs)

• Integrated with Arm products (external)
• Arm Development Studio
• Keil MDK

• Integrated with ecosystem products
• Hybrid solutions

• Augments modelling ecosystem
• Fast Models, QEMU, Partner Models

© 2025 Arm. All rights reserved.

Summary

• The trend toward AI in vehicles is driving the need for earlier and
higher quality software.

• Virtual prototypes have distinct advantages over traditional
hardware-based approaches in terms of earlier availability, better
scalability and greater accessibility throughout the supply chain.

• Native execution is redefining simulation with near-silicon speed for
both pre- and post-hardware development.

• Fast Models remain a viable technology for detailed, early access
models of the Arm architecture.

© 2025 Arm. All rights reserved.

END

Tutorial: Scalable Virtual Platforms
for Automotive and Beyond

Session #2: Integrating Virtual Platforms as
Scalable Testbeds for Automotive Software

Matthias Berthold, tracetronic GmbH

Motivation

• What we see so far:
• What is a VP?
• How do I use it?
• Why use it all?

• But: All for a single test, only once, manually.

• Before scaling: Automation!

Motivation - Why test automation?

Iterative
development

Tons of
requirements

Plenty of variants

§ Legal require-
ments, e.g.
ISO-26262 or
UNECE

Increasing SW-complexity

…

Growing need of
tests and test
executions à
ensure quality

Test automation!

Motivation – Automotive POV

• Testing and automation in Automotive:
• Hardware-in-the-loop and lab cars
• In-vehicle
• Software-in-the-loop (ADAS/AD, Infotainment…)

• Current challenges/trends:
• “Shift left” à More testing at the beginning of development
• “Modern” software development à OTA updates…
• More standards and open formats (e.g. ASAM XIL, OpenSCENARIO, FMI…)

Demo – Overview

• Create configs to use the VP
• Create a test case and execute it
• Add a trace analysis to check behavior over time
• Stimulation (open loop tests)
• Reporting incl. code coverage
• Debugging

Demo – ecu.test

• Test automation: unit tests à integration tests
à system tests à in vehicle tests
• Used by most automotive OEMs and Tier-1s
• But also agricultural, Construction machines, new energy…

• GUI or Python code for test case implementation
• Over 60 tool connections and possibility for user extensions
• Connections to ALMs (sync requirements and reports)
• Q-Kit available (ISO-26262)

Demo – ecu.test

Demo – Configuration

• Connection ecu.test - VP: FMI
• FMI = Functional Mock-up

Interface
• Free and open standard for

dynamic simulation models (FMU)
• Support with > 250 tools
• Layered Standards for BUS & XCP

Demo – Configuration

<fmiModelDescription ... fmiVersion="3.0" modelName="myVP" ...>
<CoSimulation modelIdentifier="myVP" needsExecutionTool="true"

canHandleVariableCommunicationStepSize="true" ... />
<DefaultExperiment startTime="3" stopTime="5" stepSize="0.01" />
<ModelVariables>

<Float64 name="time" valueReference="0" causality="independent"
variability="continuous" />

<Float32 name="system.max31855.temp" valueReference="1" causality="input"
variability="continuous" start="10.0" />

<UInt32 name="system.gpio.data" valueReference="2" causality="output"
variability="discrete" />

</ModelVariables>
<ModelStructure>

<InitialUnknown valueReference="1" />
<Output valueReference="2" />

</ModelStructure>
<Annotations>

<Annotation type="VCML">
<VP host="localhost" port="8888" executable="resources/vp" ... />

</Annotation>
</Annotations>

</fmiModelDescription> Model Description

FMU Lib

Packager

github.com/aut0/avp64

GPIO Pin Out Temperature In
FMU

Model Description

FMU Library

VP Binary

Temperature GPIO

Demo – Test case creation

• Access variables (from FMU)
• Read, write, checks…
• „wait“ == simulation time

Demo – Stimulation

• Define complex signal inputs
• e.g. Ramps, sine, noise…

• Used for “open loop testing”

Demo – Trace Analysis

• Verify signals and their
behaviour over time
• Define (combined) conditions,

triggers…
• Reuse templates

Demo – Reporting and Code Coverage

• Results of execution
• Basis for synchronization with

ALMs

• Create more test cases by
analyzing code coverage

Demo – Debugging

• Attach debugger
to test case to find
problems in
software from
within testcase
• Lauterbacher, VS

Code…

Scaling

• After automation: Scaling!
• Goal: Scale as much as you can!
• That’s the benefit of virtual platforms à No hardware or

other dependencies
• Needed for all the requirements, variants, code changes…

• APIs and technologies:
• REST API or command line interface
• Windows, Linux, Docker…
• Jenkins, Github Actions, custom code/platform, test.guide…

Reviews

• What to do with tons of reports?!
• Overviews (e.g. test.guide):
• Dashboards
• Filters
• Comparisons

• (Automatic) reevaluations
• E.g. by finger printing

• Address devs AND management!

Traceability

• Overview:
• How good is my requirement

tested?
• Can I release it?

• Requirements:
• Links between all artifacts
• Central organized system for

reporting with sync to ALMs

Requirement

Test Spec

Test

Test plan

Execution

Report

Test Coverage

Release

Traceability

Collaboration

• Smart usage of test results
• “Instant” feedback for

developers (especially
between integration levels)
• Use of stages, branches,

custom test sets…
• Github PRs, Jira ticket

creation…

Testing Feedback

Summary

• Complete automation workflow:
• a single test case on a single VP Linux based test bench

• Scale executions for more variants, platforms, systems...
• “Do shift left” (bugfixing at the beginning), avoid Big Bang at the end!

• Handling of tons of results with reviews and sync to requirements

à From (manual) testing to collaborative platforms!
à From requirement to synced test results with target compiled code!
à Thanks to Virtual Platforms without any hardware!

Outlook

• Native test execution on ARM systems à Performance
• AI based test case creation
• AI based test result reviews and reevaluations
• Reuse test cases with HiL systems or in-vehicle
• System test with final hardware
• Using mapping abstraction layer

Questions

Leveraging SystemC-TLM-based
Virtual Prototypes for Embedded Fuzzing

C. Ghinami1, J. Winzer1, N. Bosbach1, L. Jünger2, S. Wörner3, and
R. Leupers1

1RWTH Aachen University, Aachen, Germany
2MachineWare Gmbh, Aachen, Germany

3CISPA Helmotz Center for Information Security, Saarbrücken, Germany

About Us

Chiara Ghinami
• PhD student at Chair for Systems on Silicon (SSS)

RWTH Aachen University
• Embedded Software Testing using VPs

Aachen

Rainer Leupers
• Head of the chair

~ 10 researchers

R&D Topics:
• Virtual Prototypes
• AI for Edge Computing
• Neuromorphic Chips

Agenda

Automa'c So+ware Tes'ng

Hardware vs VP Fuzzing

CAN: Case Study

Preliminary Results

Final Remarks

Embedded Systems
When Complexity Gets Out of Hand

500k1

APP LOC

>100M3

50M – 100M2

1The State of IoT So+ware Development, Memfault Report, 2024
2Is Digital Thread/Digital Twin affortable?, Complex AdapFve Systems Conference, 2017
3Why car companies are hiring computer security experts, The NY Times, 2017

Automatic Software Testing

caba
bac

pick mutate feed input

Execu(on
save input

No

Input strings

Yes New
path/bug?

Coverage
informa9on

Target app

abc
abc abac

abac

Input
seeds

Wish List:

1. Automation

2. Speed

3. Reliability

4. Usability

5. Clear Reports Google: AFL++, OSS-Fuzz
Microso1: OneFuzz
Apple: CrossFire, KextFuzz, Hyperpom
Amazon: SnapChange

Already used for Desktop APPs

But what about Embedded Systems…

Fuzzer:

1. Only seeds needed

2. Lightweight

3. Determinis`c

4. Plug-and-play

5. GUI with coverage,
crashes

Hardware vs VP Fuzzing

VP-based testing

• Faster execution à faster bug
detection

• Easy introspection & tracing

• Scalable

• Early Testing

Debug connection

Coverage

On-board tes@ng

• High execu8on fidelity

• Difficult to debug

• Difficult to scale

AFL++

input 2

VP instance

CPU

BUS

I/O

M
E
M Target app

feedback

input 1

feedback

Case of Study: CAN

PROBE
B
U
S

CAN

MEM

Data
Injector

1

2

3

1
Data read access
intercepted 2

Fuzzer data
injection

3
Read transaction
takes place

CPU

Fuzz data

Reproduced
Set-up:

Why CAN?

What is CAN?

“The CAN is a communica1on protocol
designed specifically for the automo1ve.
It enables the communica1on between
ECUs.”

ECU

Preliminary Results

0.
9

0.
4

50

0

10

20

30

40

50

60

AVP SIM-A BOARD

EX
EC

 T
IM

E
[M

S]

ZEPHYR OS

Lower is
better!

> x50

Are we faster than physical
hardware?

Can we execute real-word
workloads?

• Buildroot (Linux)

• Drone firmware

• Robot (on its way)

Can we unveil bugs?

Node Node

Injector

Payload > 8B

Hangs

Final Remarks

Fuzzer is not bulletproof… Post-fuzzing analysis is important

x

Code Coverage ≠ 100%
SW TESTS [%]

Manual Tests

Fuzzing

Static Analysis

…But it can s@ll help

1. Fuzzing Loop

2. Source Code Inspection

Crashes

Conclusion

There is now a fast, flexible and easy-to-use embedded fuzzing opFon for AFL++

Performance:
• Faster than physical board

Usability:
• Integrated debugging op(on
• Easier tes(ng and tracing

Flexibility:
• Extensive peripheral support

Thank you for your attention!

Early Testing:
• Software testing ahead of

hardware availability

