
 
 

Scalable Test bench Architecture and 

Methodology for Faster Codec and Computer 

Vision Scenario Verification 
 

Azhar Ahammad 

Lead Engineer. Sr , Qualcomm Incorporated  

Shreekara Murthy 

Engineer, Qualcomm Incorporated 
 

 
Abstract- The Video subsystem supports CODECs like HEVC, H264D, VP9D and AV1D. The Use cases of our video 

subsystem core include MCTF(Motion Compensated Temporal Filtering), visual special effect and other latest video 

features. Video core top level integration tests spread across multiple test suites for various categories like GPIO (General 

Purpose Input/Output), various categories of IRQs, a verity of automotive requirements like FUSA (Functional Safety), a 

bunch of AXI related functionalities, various spare register features, Clock controller modes and Debug subsystem 

related scenarios etc. Different chipsets are derived out of the existing architecture and new architecture comes with 

various updates around these categories of features. In these cases, the maintainability of the functional integration tests 

becomes a challenge test intent, the micro steps or sequences, checkers and coverage for each feature needs to be updated 

corresponding to the interface changes, tech node updates, new automotive requirements etc. The time involved in 

making these changes in the Testbench, identifying the targeted tests, and closing functional coverage on time is huge. 

This paper proposes an advanced methodology to resolve above challenges in top level integration verification by creating 

new scenarios and deploys an integration dashboard with functional coverage details. The architecture is implemented 

using synthesizable components and so can be ported over to any emulation platform for faster debugs. The new 

approach uses Feature Mapping Table (FMT) as a one-point configuration mechanism for this and generates test 

scenarios, checkers, and functional cover points accordingly and this avoids the manual. The configurability of the 

methodology makes it scalable. We have successfully implemented this methodology in our internal projects which 

resulted in 60% reduction in test update and coverage closure times. 

 

 

I.   INTRODUCTION 

Video subsystem integrates different blocks to perform control of video decode/encode processing and 

computer vision processing. The integration tests for the Video core are spread across multiple test suites for various 

categories. The complete list of the features and categories are mentioned below in Table 1, these features are 

integrated with the video core. There are close to 200+ feature characteristics which are to be verified. These 

characteristics were identified for one of our latest projects. With the current approach of running the functional or 

Formal connectivity checks all these features cannot be exhaustively verified, achieving complete toggle coverage 

for these features was not possible. The current approach checks the feature connectivity and the functionality. The 

tests at the core level can also be verified on Emulation platform to catch any bugs or functionality mismatch. Fig 1 

represents the different features of our core. 

 

 



 
 

 
 

 

Fig 1: Features of the subsystem core  

 

Feature Type Description  Type of signals 

AXI AXI bus interface Signal type 

Debug SS 
Debug SS is a hub of all debug 

related interface blocks   
Signal type 

Control Processor 
Control processor is used used 

for various applications 
Signal type 

IRQ 
Interrupt related signals for the 

RTL 
Signal type 

GPIO 

General Purpose Input Output 

signals are used to program the 

DUT registers. 

Signal type 

FUSA 

Functional Safety features 

corresponding to latest  safety 

standards. 

Signal type 

Clock Controller 

The Clock controller block  is 

used to generate system clocks, 

reset signals and power control 

signals  

Signal type 

 

 

Table 1:  Categories of Features  

 

 

II.  PROBLEM STATEMENTS 

 

The current approach to manage various categories of top-level integration tests is by running the functional 

tests in SV UVM environment or through formal connectivity checks. But complexity in maintaining proper checks 

at all the steps involved in a feature verification limits exhaustive verification of features. The problem with the 

current approach is,  

• Maintainability of the functional integration tests becomes a challenge as the test intent, the micro steps or 

sequences, checkers for each feature need to be updated corresponding to interface changes, tech node 

updates, new automotive requirements etc.  



 
 

• subsystem core top level has 300+ cover points and coverage point updates are manual for these design 

changes which makes it non-scalable across projects.  

• The time involved in making these changes in the test bench, identifying the targeted tests, and closing 

functional coverage on time is huge (4-6 weeks). 

Debugging of most of the top-level integration use case scenarios is difficult in emulation platforms since the test 

bench components are not synthesizable. 

III.  SOLUTION 

This methodology aims to verify the feature sets with a generic flow which would minimize the DV efforts 

to run specific Testcases for targeted scenarios. The feature sets are first identified and fed as input to the Feature 

Mapping Table (FMT). The feature categorization is done based on the design requirements and can be updated 

easily across projects. The FMT can be seen below in Table 2, as seen in the Table the Source and destination 

signals need to be passed along with the conditions for the feature. The conditions include status registers based on 

which the Pseudo code will be generated. 

type tag_name src_type src_name dest_type dest_name Condition

type name Tag signal name Src Name Src Path Dest Name Dest Path

Conditions need 

to be input. 

Based on which 

the Pseudo code 

will be 

generated for 

the signals  

Table 2: Feature Mapping Table Template 

This methodology eliminates the coverage holes which was not earlier achieved through the functional tests. All 

associated values of the feature can be toggled by creating specific scenarios through functional tests. Fig 2 

represents the complete flow for the Scalable Test bench Architecture for Top Level Integration Scenario 

Verification. 

 
Fig 2: Test bench Architecture 



 
 

IV.  IMPLEMENTATION 

In this new test bench architecture, the design specification and features are captured through the Feature 

Mapping Table (FMT). That is an XLS file which is fed to the Testbench Script which converts the input data to a 

Pseudo code which is integrated with the subsystem Testbench. This generates sequence of TB pseudo codes (TPC) 

along with the input and output (.in and .out) files. These files include the address of the register, data to be written 

or read by the register and the operation to be performed (Read/Write). The TPC Processing Engine (TPE) runs test 

sequences from the test case containing TPC. We can achieve auto generation of checkers and coverage associated 

with the features. The signals are tapped from the design and are instantiated hence the signals can be driven easily 

and toggled. The coverage dashboard gives the details regarding the coverage-points associated with the features. 

Below Fig 3 is the representation of the flow. 

 

Fig 3:  Top Level Integration Scenario Verification Testbench 

As seen in Fig 4 the Testbench master Wrapper consists of AHB Master, TB command memory, Command 

Parser, whereas the Slave Wrapper consists of TB Register Interface the AHB Slave. We have designed a separate 

arbiter logic for enabling the control for the implemented Testbench AHB master and the subsystem core AHB 

master. The main control logic is defined in the with Finite State machine(FSM), this controls the data flow. The 

RIF consists of all the details regarding the registers.  

 

Fig 4: Implemented  Testbench components 

Based on the Opcodes the data transfer operations between the two masters can be controlled. The 

transactions are controlled through the Arbiter (i.e., Read/Write operation). We have so far defined 6 Opcodes for 



 
 

both TB model and the core TB. More Opcodes can be added based on the design requirements. Table 4 mentions 

the few Opcodes and the Operation associated with it.  

 

Table 4: Opcodes 

V.  RESULTS 

 

Benefits of this methodology are listed below. 

• The effort on the verification time can be significantly reduced since the full flow is automated 

• Easy maintainability and highly scalable across different projects since only FMT table needs to be 

reviewed and updated based on the design requirements. 

• This approach gives us the complete configurable coverage dashboard information for integration 

verification review. 

• Review of small steps covered in test sequence for verifying a feature will be easy since the dashboard 

captures all of them. 

 This architecture was implemented for one of our mobile chip project. The methodology was also verified for an 

automotive targeted project for the two features GPIO and IRQ. Complete functional coverage can be achieved with 

this approach. Since the test bench components are synthesizable the same architecture can be used on Emulation 

and Simulation platforms. 

 
Fig 6: Comparison between the old and new approach 

 



 
 

VI.  FUTURE WORKS 

  

We plan to implement this architecture for all the integration scenarios. Enabling the debugger architecture 

to catch any bugs on Firmware platforms  

 

VII.  CONCLUSION 

 

The proposed scalable test bench architecture with configurable coverage dashboard and easily 

maintainability across project changes gave significant improvement in the verification of integration features. The 

synthesizable code makes it suitable to use this on both simulation and emulation platforms which enables debugs of 

integration features seamless across platforms. The effort spent for achieving 100% functional coverage also can be 

reduced using this approach. The proposed design can be used in several categories for which functional or formal 

approach would take lot of time. 
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