
Reverse Hypervisor
Hypervisor for fast SoC Simulation

François-Frédéric Ozog, Shokubai
Mark Burton, Accelera CPSWG chair

Shift left for complex “market” applications
Design House

Silicon Provider
Board Maker Tier 1 Auto/Plane/Satellite

maker

Pre-silicon dev
• Market apps
• Operating System
• Hypervisor
• Boot Firmware
• Secure Firmware

Presentation focuses on LT while can do AT too

1M km autodrive
ISO21434
UN156

Virtual Platform for “Virtual Prototyping”

• Fast enough VCML processor component (see T4.3 tutorial)
• From instruction up to “infinite realtime” quantum (1 min. = 1min.)
• bigLITTLE: 8*3Ghz performance cores + 4*1Ghz low power cores

• Simulate as little as possible
• Use of processor facilities to trap what has to be simulated in terms of

instructions, architectural state, registers
à Standalone hypervisor based proof of concept
 (no constraints from ether SystemC or VCML)

Reality check: OS boot
• DUT: Solidrun Macchiatobin, quadcore 2Ghz Cortex-A72 Marvell

• Emulate cores, devices (SD-card…) and chips (GIC, mailbox, thermal…)
• Test Case

• Downloaded SD-CARD image (TFA, U-Boot, Linux) installed as SD-CARD backend
• U-Boot has loaded Linux, ready to “booti” (after that almost noting to do)

• Measures
• Roughly 50% faster on Apple M1 which is Arm core at 3.2GHz
• 32K traps out of 105M instructions (0.03%) out of 400 “trap sites”
• Infinite quantum boot: 11s (incl. timeouts for non present devices)
• 1 instruction quantum boot (NOP “decoration”): 165s

• Expectations
• 1,000 instructions quantum (leveraging PMU infrastructure): 12s

From Hypervisor… (MacOS HyperVisor Framework)

Processor

Program
instructions

Registers

Processor

Program
instructions

Registers

Processor

Program
instructions

Registers

Processor

Hypervisor

… to Virtualization … (MacOS Virtualization Framework)

Processor

Program
instructions

Registers

Processor

Program
instructions

Registers

Processor

Program
instructions

Registers

Devices

Processor

Hypervisor

vDevices vDevices

Virtual Machine Monitor

Devices

AVP64 VCML: Qemu with single threaded TCG

Cortex-A76

Recompiled

Program
instructions

Registers

Cortex-A72

Recompiled

Program
instructions

Registers

Devices Devices Devices

Cortex-M1

Recompiled

Program
instructions

Registers

Devices

Neoverse N1

JIT with state emulationJIT with state emulationJIT with state emulation

Recompiled:
even Arm on Arm

Qbox VCML: Qemu + multi-threaded TCG

Cortex-A76

Recompiled

Program
instructions

Registers

Cortex-A72

Recompiled

Program
instructions

Registers

Devices Devices Devices

Cortex-M1

Recompiled

Program
instructions

Registers

Devices

Neoverse N1

JIT with state emulationJIT with state emulationJIT with state emulation

Recompiled:
even Arm on Arm

Qbox+KVM/HVF VCML: blazing fast but…

Neoverse N1

EL3, S-EL1
GIC

Program
instructions

Registers

Neoverse N1

EL3, S-EL1
GIC

Program
instructions

Registers

Devices Devices Devices

Cortex-M1

Program
instructions

Registers

Devices

Neoverse N1

Hypervisor

Virtual Machine Monitor Virtual Machine Monitor

Emula4 VMCL: synthetic CPU on top of host

Cortex-A76

Program
instructions

Registers

Cortex-A72

Program
instructions

Registers

Devices Devices Devices

Cortex-M1

Program
instructions

Registers

Devices

Neoverse N1

Hypervisor

Virtual Machine Monitor

Apple to Apple benchmarks

• Emulate and compare to Qemu “virt” machine on same hardware
• Boot time check point: 8.0s for Qemu, 1.2s for Emula4
• Same 6GB/s virtio (Emula4 is still just a prototype…)
• Much better cpu-bound performance

raid6:
int64x8

Raid6:
neonx4

xor:
32reg

xor:
neon

Qemu 2GB/s 3GB/s 5GB/s 3GB/s
Emula4 14GB/s 36GB/s 44GB/s 54GB/s

Synthetic core capabilities
• Processor states
• EL3 (Firmware), EL2 (Hypervisor), EL1 (OS), EL0 (apps)
• Secure mode and non-secure mode: EL3, S-EL2, EL2, S-EL1, EL1, S-EL0, EL0
• Secure memory (memory firewall)

• bigLITTLE with SCMI control of host cores
• Fast enough to validate 4K WideVine DRM
• MPAM isolation but not bandwidth measures/enforcement
• Arm v9 Realms on Arm v8 cores
• Custom instructions and/or registers
• Enhanced “standard” instructions

The journey to Emula4 “Interception” model
• Try 0: possible ?
• EL3 instructions, CurrentEL, Exceptions

• Try 1: No patching: use debug registers
• KVM: no go because of forced GIC and other constraints
• HVF: provided the basis, ensure can build on other commercial hypervisors
• Slow pre-analysis, complex metadata to execute on different hardware

The journey to Emula4 “Interception” model
• Try 2: hypervisor trap injection as debugger breakpoint injection
• No stored image change
• Smart traps injection as code uncompress/autorelocate itself/loads artifacts
• Smart JITting to limit traps to VMM
• …

• Next (not in any order, not complete)
• Application patching through OS hooking from hypervisor
• Mind experiment with rev.ng to recompile on the fly (SVE2 on Armv8)
• LT or AT behavior when executing complex emulation
• SystemC VCML packaging

Hypervisor wish list

• PMU for quantum implementation
• SCMI control of cores to ensure “exact” performance
• Fine grained TLB maintenance
• Fine grained trap control (high jacking HVF to get access to private

control for internal assessment)
• Address spaces per vcpu (Secure Memory, Realms)
• Lightweight sync (IRQ injection, WFI, WFE)
• Coresight traces from VM
• Nested virtualization

Machine assembly ???IP-XACT??? (silicon provider)
⇣

⇣
Device Tree(S)

-vobj "RAM#address=0x4000000||hostmem#size=4"
-vobj "SECRAM#address=0x4400000||hostmem#size=12"
-vobj "RAM#address=0x05000000||hostmem#size=2048"
-vobj "AP806@MARVELL#address=0xf0000000"
-vobj "CP110@MARVELL#address=0xf2000000"
 -vobj "GIC@AP806@MARVELL#name=main_gic;root=true"
-vobj "CP110@MARVELL#address=0xf4000000"

-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:1@main_gic…"
-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:2@main_gic…"

Comments & questions

Please feel free to just state what you think

Questions are welcome too

Solidrun Macchiatobin, a Marvell 8040 board
• HW simulation
• Chips

• Complete/partial: A cores, Marvell Cache Coherency Unit, Marvell GIC…
• “Responders”: Memory controller, temperature sensors, mailbox, SERDES, SCP…

• Devices (SD-Card, eMMC, UARTs…)
• Boot
• Binary bootable image from Solidrun website
• Boot ROM and processor substitute: place image at the right place

• Software
• Secure software running at EL3 and S-EL1
• 3 times faster than real hardware on Apple M1

SDV ”sensor fusion” driving use case

SoC

Rest of
SDV

(ADAS,
heads up
display,

storage…)

Stimuli:
Replay

or
Digital
worlds

Deploying simulation

Developer's desk Developer’s “local” Board cloud Silicon cloud

Federated Simulation orchestrator, control and observer

Rest of SDV
(ADAS,

heads up
display,

storage…)

4K
camera
IR HD

camera

LIDAR 2.0

Carla

1

Emula4 cluster , FSS layers

Developer's desk Developer’s “local” Board cloud Silicon cloud

Federated Simulation orchestrator, control and observer

Rest of SDV
(ADAS,

heads up
display,

storage…)

4K
camera
IR HD

camera

LIDAR 2.0

Carla

1

Emula4 Emula4

Emula4 focuses on A-cores & context

Developer's desk

Federated Simulation orchestrator, control and observer

Emula4

Qemu/TCG

Qemu/TCG only used for instruction simulation
Emula4: Memory backends, chips (GIC..), devices

