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Shift left for complex “market” applications
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maker

Pre-silicon dev
• Market apps
• Operating System
• Hypervisor
• Boot Firmware
• Secure Firmware

Presentation focuses on LT while can do AT too
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Virtual Platform for “Virtual Prototyping”

• Fast enough VCML processor component (see T4.3 tutorial)
• From instruction up to “infinite realtime” quantum (1 min. = 1min.)
• bigLITTLE: 8*3Ghz performance cores +  4*1Ghz low power cores

• Simulate as little as possible
• Use of processor facilities to trap what has to be simulated in terms of 

instructions, architectural state, registers
à Standalone hypervisor based proof of concept
     (no constraints from ether SystemC or VCML)



Reality check: OS boot
• DUT: Solidrun Macchiatobin, quadcore 2Ghz Cortex-A72 Marvell

• Emulate cores, devices (SD-card…) and chips (GIC, mailbox, thermal…)
• Test Case

• Downloaded SD-CARD image (TFA, U-Boot, Linux)  installed as SD-CARD backend
• U-Boot has loaded Linux, ready to “booti” (after that almost noting to do)

• Measures
• Roughly 50% faster on Apple M1 which is Arm core at 3.2GHz
• 32K traps out of 105M instructions (0.03%) out of 400 “trap sites”
• Infinite quantum boot: 11s (incl. timeouts for non present devices)
• 1 instruction quantum boot (NOP “decoration”): 165s

• Expectations
• 1,000 instructions quantum (leveraging PMU infrastructure): 12s 



From Hypervisor…                    (MacOS HyperVisor Framework)
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… to Virtualization …              (MacOS Virtualization Framework)
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AVP64 VCML: Qemu with single threaded TCG
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Qbox VCML: Qemu + multi-threaded TCG
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Qbox+KVM/HVF VCML: blazing fast but…
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Emula4 VMCL: synthetic CPU on top of host 
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Apple to Apple benchmarks

• Emulate and compare to Qemu “virt” machine on same hardware
• Boot time check point: 8.0s for Qemu, 1.2s for Emula4
• Same 6GB/s virtio (Emula4 is still just a prototype…)
• Much better cpu-bound performance

raid6:
int64x8

Raid6:
neonx4

xor:
32reg

xor:
neon

Qemu 2GB/s 3GB/s 5GB/s 3GB/s
Emula4 14GB/s 36GB/s 44GB/s 54GB/s



Synthetic core capabilities
• Processor states
• EL3 (Firmware), EL2 (Hypervisor), EL1 (OS), EL0 (apps)
• Secure mode and non-secure mode: EL3, S-EL2, EL2, S-EL1, EL1, S-EL0, EL0
• Secure memory (memory firewall)

• bigLITTLE with SCMI control of host cores
• Fast enough to validate 4K WideVine DRM
• MPAM isolation but not bandwidth measures/enforcement
• Arm v9 Realms on Arm v8 cores
• Custom instructions and/or registers 
• Enhanced “standard” instructions



The journey to Emula4 “Interception” model
• Try 0: possible ?
• EL3 instructions, CurrentEL, Exceptions

• Try 1: No patching: use debug registers
• KVM: no go because of forced GIC and other constraints
• HVF: provided the basis, ensure can build on other commercial hypervisors
• Slow pre-analysis, complex metadata to execute on different hardware



The journey to Emula4 “Interception” model
• Try 2: hypervisor trap injection as debugger breakpoint injection
• No stored image change
• Smart traps injection as code uncompress/autorelocate itself/loads artifacts
• Smart JITting to limit traps to VMM
• …

• Next (not in any order, not complete)
• Application patching through OS hooking from hypervisor
• Mind experiment with rev.ng to recompile on the fly (SVE2 on Armv8)
• LT or AT behavior when executing complex emulation
• SystemC VCML packaging



Hypervisor wish list

• PMU for quantum implementation
• SCMI control of cores to ensure “exact” performance
• Fine grained TLB maintenance
• Fine grained trap control (high jacking HVF to get access to private 

control for internal assessment)
• Address spaces per vcpu (Secure Memory, Realms)
• Lightweight sync (IRQ injection, WFI, WFE)
• Coresight traces from VM
• Nested virtualization



Machine assembly ???IP-XACT??? (silicon provider)
⇣

⇣
Device Tree(S)

-vobj "RAM#address=0x4000000||hostmem#size=4"
-vobj "SECRAM#address=0x4400000||hostmem#size=12"
-vobj "RAM#address=0x05000000||hostmem#size=2048"
-vobj "AP806@MARVELL#address=0xf0000000"
-vobj "CP110@MARVELL#address=0xf2000000"
   -vobj "GIC@AP806@MARVELL#name=main_gic;root=true"
-vobj "CP110@MARVELL#address=0xf4000000"

-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:1@main_gic…"
-vobj "PL011#uartclk=main_clock;apb_pclk=main_clock;irq=spi:2@main_gic…"



Comments & questions

Please feel free to just state what you think

Questions are welcome too 



Solidrun Macchiatobin, a Marvell 8040 board
• HW simulation
• Chips

• Complete/partial: A cores, Marvell Cache Coherency Unit, Marvell GIC…
• “Responders”: Memory controller, temperature sensors, mailbox, SERDES, SCP…

• Devices (SD-Card, eMMC, UARTs…) 
• Boot
• Binary bootable image from Solidrun website
• Boot ROM and processor substitute: place image at the right place

• Software
• Secure software running at EL3 and S-EL1
• 3 times faster than real hardware on Apple M1



SDV ”sensor fusion” driving use case
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Deploying simulation
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Emula4 cluster , FSS layers
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Emula4 focuses on A-cores & context

Developer's desk

Federated Simulation orchestrator, control and observer

Emula4

Qemu/TCG

Qemu/TCG only used for instruction simulation
Emula4: Memory backends, chips (GIC..), devices


