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About Electra IC

• Founded in 2014

• Headquarter in Istanbul, Turkey

• Branch office in Ankara

• Total 20 people

• ASIC/FPGA D&V Services

• ASIC/FPGA/EmbSys Training 
Services

© Accellera Systems Initiative 2



Introduction
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Main Objectives of 
Tutorial

Requirement 
Capture

Advanced Verification 
Methodology

RTL Analysis

Verification 
Procedure 
Generation

Verification with 
Assertion and Self-

Checking Mechanism

Verifying 
Assertions with 

SVAUnit

Functional and 
Code Coverage



Requirement
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Requirements are definitions of “what” 
hardware must do.

How?



Requirement
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Source: 
Airborne Electronic Hardware Design Assurance 

R. Fullton & R.Vandermolen, 2015



Properly Captured Requirement Format
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The {output or verifiable aspect}
shall

{always, unconditionally, only}
{assert, deassert, set to value}

{before, after, when, during, within}
{xnsec, the next rising edge of a clock, read/write asserts low}

when {inputs are set to a combination of high/low,
a sequence of events has occurred or

a timed period elapses}

Source: 

Airborne Electronic Hardware Design Assurance 

R. Fullton & R.Vandermolen, 2015



Properly Captured Requirement Sample
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EIC_IP_CORE_FR_001:

The {dscrt_out}

shall 

{always} 

{assert to logic HIGH} 

{within 40 nanoseconds}

when {dscrt_in is asserted to logic HIGH}



Requirement Tracing
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Introduction to Verification
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Is the Design Under 
Test working 

correctly?

Design Under Test



Goals of Verification
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Verification 
goals

Ensure that design 
behaves as 
expected

Ensure that design does 
not show any 

unexpected behavior 
under illegal and error 

conditions



Verification Methodologies Comparison
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SV/UVM Verification Methodology

• Sequence Methodology

• Factory Mechanism

• Config Mechanism

• UVM Phase

• Modularity and Re-Usability
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Verification Procedure Document

• Verification Environment

• For each testcase:

– Description

– Coverpoints

– Test Steps
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Verification Procedure Document
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AXI4-Lite Slave 
Interface

SPI Master 
InterfaceInput Pins Output Pins



Verification Procedure Document
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Design 
Under 

TestIn
te

rf
ac

e

Base Test
EnvironmentEnvironment

uvm_config_db

AXI 
VIP 

Config

SPI VIP 
Config

SPI 
Sequence

SPI 
Coverage

SPI Agent:
1. Driver
2. Sequencer
3. Monitor

AXI 
Sequence

AXI 
Coverage

AXI Agent:
1. Driver
2. Sequencer
3. Monitor

Reg 
Model



Verification Procedure Document
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How to

checkout 
files

configure
verification

environment

run 
test case



Verification Procedure Document
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[EIC_IP_CORE_FR_002] spi_cs_n shall assert to logic LOW and remain for
24.5*Tspi_sclk ± 1% when any of the Active State conditions of spi_mosi are
satisfied. (Tspi_sclk = 10 MHz)

[EIC_IP_CORE_FR_005] spi_sclk shall assert to clock signal with the period
10 MHz when any of the Active State conditions of spi_mosi are satisfied.



Verification Procedure Document
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[EIC_IP_CORE_FR_008] spi_mosi shall assert to opcode and data value where;

• Opcode : 0x04

• Data       : SPI CONF DATA REG 2(15:0)

within 500*Ts_axi_aclk ± 1% when SPI CONF DATA REG 2(31) is logic HIGH. (Ts_axi_aclk = 100 
MHz, SPI CONF DATA REG is register at address 0x8)



Verification Procedure Document

TC_ProjectName_FunctionalElement_Feature_CHECK

TC_PRJX_SPI_PORT_CHECK
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Verification Procedure Document
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TC_PRJX_SPI_PORT_CHECK

Description Coverpoints Test Steps



Verification Procedure Document

Description
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This test case verifies active state of output ports of SPI Master Interface which are listed below.
• spi_cs_n
• spi_sclk
• spi_mosi

As test scenario after applied reset, AXI4 Write Transfer to SPI CONF DATA REG 2 register which is located 
at address 0x8 with 31st of Write Data set to 1 and (30:0) set to a random value will be initiated. Then, at 
required time, active states of spi_cs_n, spi_sclk and spi_mosi output ports are verified.

Pass/Fail Criteria: Assertions and checkers of requirement checking mechanism of test class should
pass.



Verification Procedure Document

Coverpoints

© Accellera Systems Initiative 22

spi_master_cg: spi_cs_cp
spi_master_cg: spi_opcode_cp
spi_master_cg: spi_trans_type_cp
axi4_slave_cg: axi4_trans_type_cp
reg_cg: spi_conf_reg2_cp



Verification Procedure Document

Action Expected Result Assertion Requirement Links

1. Apply clock signal 
with period of 100 
MHz to sys_clk input.

2. Set reset_n to logic 
LOW.

3. Wait for 4 to 10 
sys_clk cycles.

4. Set reset_n to logic 
HIGH



Verification Procedure Document

Action Expected Result Assertion Requirement Links

5. Initiate AXI4 Write 
Transfer to address 
0x8 with 31st bit of 
write data set to 1 
and (30:0) bits of 
write data set to 
random value.



Verification Procedure Document

Action Expected Result Assertion Requirement Links

6. Perform steps 6.1-
6.3 in parallel 
manner

6.1 Within 
500*sys_clk± 1%
cycles check 
spi_mosi.

spi_mosi should 
assert 
respectively to 
opcode and data 
byte in order:
Opcode    : 0x04
Data Byte : (15:0) 
bits of write data 
initiated in step 5.

EIC_IP_CORE_FR_008



Verification Procedure Document

Action Expected Result Assertion Requirement Links

6.2 Within 
500*sys_clk± 1%
check spi_cs_n.
Keep checking for 
24.5*Tspi_sclk± 1%.

spi_cs_n should 
assert and 
remain at logic 
LOW.

eic_ip_core_fr
_003_spi_cs_n
_check

EIC_IP_CORE_FR_003

6.3 Within 
500*sys_clk± 1%
check spi_sclk.

spi_sclk should 
assert to clock 
signal with 
period of 10 
MHz.

eic_ip_core_fr
_005_spi_sclk_
check

EIC_IP_CORE_FR_005



Requirement Tracing
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Do all requirements 
properly linked in 

various components?



Requirement Verification

Verification with:

– Assertion

– Self-Checking
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Verification with Assertion

© Accellera Systems Initiative 29

“s_addr_ready shall assert to 0x1 after one clock cycle 
slv_en is asserted to 0x1”

EIC_IP_CORE_FR_100



Verification with Assertion
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cover property (S_ADDR_READY_ASSERT);

property S_ADDR_READY_ASSERT;
@(posedge bus_clk)
($rose(slv_en)) |=> (s_addr_ready);                             
endproperty

assert property (S_ADDR_READY_ASSERT))
else $error(“EIC_IP_CORE_FR_100 has failed.");



Verification with Self-Checking Mechanism
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“i2c_sda shall assert to I2C Write Transfer Sequence within 5us after 
reset_n is set to logic HIGH with the following conditions:”

• Slave Address : 7b1101010
• Register Address : 0xC4
• Write Data Byte in order: 0xD0, 0xC1 and 0xAA

EIC_IP_CORE_FR_102



Verification with Self-Checking Mechanism
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Task which verifies:
1. Time when i2c_sda is 
deasserted after reset.
2. Asserted value of the 
i2c_sda 



Verification with Self-Checking Mechanism
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wait(dut_if.reset_n == 1);

tinit = $time; 

check_i2c_write
(EIC_IP_CORE_FR_102,7b1101010, 8hC4, 8hD0, 8hC1, 8hAA, tinit, 5us)



Verification with Self-Checking Mechanism
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check_i2c_write
(Req. ID, Slave Addr., Register Addr., Write Data, Starting Time, Req. Time)

wait(m_i2c_seq.ev0.triggered);
tfinal = $time;



Verification with Self-Checking Mechanism
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wait(m_i2c_seq.ev0.triggered);
slv_addr = m_i2c_seq.data_buf;
wait(m_i2c_seq.ev0.triggered);



Verification with Self-Checking Mechanism

– Register Address  reg_addr                                                   

– First Write Data Byte  wr_data[0]

– Second Write Data Byte  wr_data[1]

– Third Write Data Byte wr_data[2]
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Verification with Self-Checking Mechanism
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if(({Slave Addr, 1b0} == slv_addr) && (Register Addr == reg_addr) && 
(Write Data [0] == wr_data[0]) && (Write Data [1] == wr_data[1]) && 

(Write Data [2] == wr_data[2]) && (tfinal – tinit <= Req. Time))
`uvm_info(“req_pass”, $sprint(“Requirement: %s has passed”, Req.ID), UVM_LOW)

else
`uvm_error(“req_fail”, $sprint(“Requirement: %s has failed”, Req. ID))



Verification with Self-Checking Mechanism
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Control Register should assert to write data byte of the AHB Write 
Transfer within 2 clk cycles, after all of the following conditions are 
satisfied:
• reset_n is set to logic HIGH
• AHB Write Transfer to Control Register address is completed

EIC_IP_CORE_FR_103



Verification with Self-Checking Mechanism

Register Class

class Control_Reg extends uvm_reg;

function new(string name = “Control_Reg”)

super.new(name, 16, UVM_NO_COVERAGE)

endfunction

virtual function void build();

Control_Reg = uvm_reg_field::type_id::create(“Control_Reg”);

Control_Reg.configure(this, 16, 0, “RW”, 0, 16’h0000, 1, 1, 1); 

endfunction
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size

lsb has_reset

reset
access 
type

volatility

is_rand

individually access

Register width



Verification with Self-Checking Mechanism
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In the test class register block is 
defined

REG block m_reg_block;

wait(dut_if.reset_n == 1);
m_reg_block.Control_Register_h.write(status, write_value);



Verification with Self-Checking Mechanism
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get_value = m_reg_block.Control_Register_h.get(status);

repeat(2) @(posedge bus_if.clk);
m_reg_block.Control_Register_h.read(status, read_value);



Verification with Self-Checking Mechanism
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If(read_value == get_value)
`uvm_info(“req_pass”, $sprint(“Requirement EIC_IP_CORE_FR_103

has passed”), UVM_LOW)
else 

`uvm_error(“req_fail”, $sprint(“Requirement: EIC_IP_CORE_FR_103
has failed”, Req. ID))



Verification of Assertion with SVA Unit
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Source: 

Socianu.A & Ciocirlan.I (2015, April 29)  
SystemVerilog Assertion Verification with SVAUnit

Retrieved from: https://www.amiq.com



Verification of Assertion with SVA Unit
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Is assertion working 
as specified?



Verification of Assertion with SVA Unit
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Coverage Analysis

We need metrics for…
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Coverage Analysis

• Functional Coverage

• Code Coverage

• Other Coverage Types

– Linting (quality of RTL code)

– Clock Domain Crossing (metastability)
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Functional Coverage
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Design 
Behaviours

Do you hit 
them?

Do they 
violate?

Functional 
Coverage



Functional Coverage
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Assertions

Properties

Coverage

cover property (S_ADDR_READY_ASSERT);

property S_ADDR_READY_ASSERT;
@(posedge bus_clk)
($rose(slv_en)) |=> (s_addr_ready);                             
endproperty

assert property (S_ADDR_READY_ASSERT)
else $error(“EIC_IP-CORE_FR_100 is 
failed.");

Design 
Behaviours

Do you 
hit 

them?

Do they 
violate?



Functional Coverage
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interconnect_cg

• bins single_wr
• bins single_rd
• bins burst_wr
• bins burst_rd

• bins slv_en_0
• bins slv_en_1
• bins slv_en_2 

mas_trans_cp slv_en_cp

Crossed



Functional Coverage
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Test Plan 
(.xml document)

Assertions

Covergroup
Coverpoints

Functional Coverage 
Analysis Report
(.html documet)



Functional Coverage
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Code Coverage

• Statement—Did we cover every statement?

• Branch—Did we cover every IF branch and CASE entry?

• Finite State Machine—Did we cover all states and transitions?

• Expression—Did we fully test our single-bit expressions?

• Condition—Did we test all the conditions in our IF statements?
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Code Coverage

Statement Coverage
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process (a)

begin

z <= ‘0’; if (a = 0) then z <= ‘1’;

end process;

Line 
Coverage

Statement 
Coverage



Code Coverage

Branch Coverage

© Accellera Systems Initiative 55

if (a = ‘0’) then 
z <= ‘1’;

else
z <= ‘0’;

end if;

case a is  

when ‘0’ => z <= ‘1’;

when ‘1’ => z <= ‘0’;

when others => z <= ‘0’;

end case;

Branch 
Coverage



Code Coverage

FSM Coverage
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IDLE

S1
Z = 1

S2
Z = 0

A = 0

A = 1

B = 1

A = 1

Transition Coverage

State Coverage

Reset = 1



Code Coverage

Condition Coverage

•
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if (a or b) then

Z <= C + 1;

end if;

• Condition 1 -> a = 1

• Condition 2 -> b = 1



Code Coverage

Expression Coverage
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Z <= A or B;

A B Z

0 0 0

1 0 1

A B Z

0 0 0

0 1 1



Code Coverage
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Why corresponding statement is not covered?

Why corresponding IF branch or CASE entry is 
not covered?

Why corresponding state or transition is not 
covered?

Why corresponding single-bit expression is not 
covered?

Why corresponding condition in related IF is 
not covered?



Code Coverage

• Reason of the code coverage holes:

– Unused Codes Lines

– Missing Test Scenario
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Code Coverage
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RTL Analysis
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Requirements
Capture

New RTL

3rd Party IP

Reuse IP

Verification

• RTL Static Analysis
• Clock Domain 

Crossing Analysis
Synthesis

P&R



RTL Analysis
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Static Analysis

Language
Check

Clock and Reset 
Signals Check Clock Domain 

Analysis

Run Basic Checks

Run Reset 
Analysis

Run Structural
Checks

FSM
Analysis

Long if-then-else
Analysis

Run Simulation 
and Synthesis

Analysis

Coding Style 
Analysis



RTL Analysis – Static Checks
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RTL Analysis – FSM Checks
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RTL Analysis – Long Path Analysis
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RTL Analysis
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2016 Industry research reports 
Clocking/CDC Errors are the #2 

cause of respins



RTL Analysis - CDC
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Questions
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