Requirements Driven Design Verification
Flow Tutorial

Ates BERNA — Managing Partner
Ahmet JORGANXHI — Design & Verification Eng.

SELECTRAIC,

Des'gn & Ver”:ICthon DESIGNANDV;R%QAL@&“‘

accellera DVEDN

About Electra IC

* Foundedin 2014
 Headquarter in Istanbul, Turkey
* Branch office in Ankara

e Total 20 people

 ASIC/FPGA D&YV Services

* ASIC/FPGA/EmbSys Training
Services

2018

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

Introduction

Main Objectives of

Tutorial
Requirement Advanced Verification -
Capture RTL Analysis
Methodology

Verification Verification with Verifying :

. . . Functional and
Procedure Assertion and Self- Assertions with Code C
Generation Checking Mechanism SVAUniIt ode Loverage

accellera -
© Accellera Systems Initiative 3

SYSTEMS INITIATIVE

Requirement

Requirements are definitions of “what”
hardware must do.

Specifies “what”
design should do

Design Engineer

2018

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 4

SYSTEMS INITIATIVE

Requirement

Source:
Airborne Electronic Hardware Design Assurance
R. Fullton & R.Vandermolen, 2015

Design Traced
to Requirements

Design Verified against
Requirements

Verification

Design

2018

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 5
SYSTEMS INITIATIVE

Properly Captured Requirement Format

The {output or verifiable aspect}
shall
{always, unconditionally, only}
{assert, deassert, set to value}
{before, after, when, during, within}
{xnsec, the next rising edge of a clock, read/write asserts low}
when {inputs are set to a combination of high/low,
a sequence of events has occurred or
a timed period elapses}

2018

DESIGN AND VERIFICATION™

Source: D ': l:l N
acceller a - Airborne Electronic Hardware Design Assurance CONF¥ EEEEEEEEEEEEEEE

© Accellera Systems Initiative 6 R. Fullton & R.Vandermolen, 2015
SYSTEMS INITIATIVE

Properly Captured Requirement Sample

EIC_IP_CORE_FR_001:
The {dscrt_out}
shall
{always}
{assert to logic HIGH}
{within 40 nanoseconds}
when {dscrt_in is asserted to logic HIGH}

DESIGN AND VERIF! TION™
accellera o DV
© Accellera Systems Initiative 7
SYSTEMS INITIATIVE

Requirement Tracing

Requirements
Document

Micro Architecture
Design Document

Design Source Codes
2018

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 8

SYSTEMS INITIATIVE

Introduction to Verification

~ N
Is the Design Under

--

Test working ,
| :
Q;‘\‘\/wre“'y? g 1

Design Under Test

DESIGN AND VERIQFQA.L'%N“‘
accellera . DV
© Accellera Systems Initiative 9

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Goals of Verification

Verification
goals

T

Ensure that design
behaves as
expected

© Accellera Systems Initiative

10

Ensure that design does
not show any
unexpected behavior
under illegal and error
conditions

2018

DESIGN AND VERIFICATION™

DVCON

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

Verification Methodologies Comparison

Features Classic VHDL SV/UVM UVVM/OSVVM

OOP - + -

+ - +
Ease of use for whose who knows VHDL

Ease of use for whose who knows

Verilog ¥ i
Code Coverage + + +
Functional Coverage - + +
+ - +
Development Tool Advantages
|[EEE Standard + + -
+

Extensive Verification IP Support

2018

DESIGN AND VERIFICATION™

DVCON

EEEEEEEEEEEEEEEEEEEEEEE

© Accellera Systems Initiative 11

SV/UVM Verification Methodology

* Sequence Methodology

* Factory Mechanism

e Config Mechanism

* UVM Phase

 Modularity and Re-Usability

DESIGN AND VERIF! TION™
accellera o DV
© Accellera Systems Initiative 12
SYSTEMS INITIATIVE

Verification Procedure Document

e \erification Environment

* For each testcase:
— Description
— Coverpoints
— Test Steps

accellera . DV
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

Verification Procedure Document

Input Pins

SYSTEMS INITIATIVE

AXl4-Lite Slave
Interface

SPIl Master
Interface

Output Pins

© Accellera Systems Initiative

14

NNNNNNNNNNNNNNNNNNNNNNN

Verification Procedure Document

Base Test
Environment \ ﬁ
SPI <:>
AX]| Sequence SPI Agent:
VIP SPI'VIP 1. Driver <:>
o Config N |2, Sequencer
SPI ~— 3. Monitor <:>
Coverage |
Reg e
Model Sequence AXI Agent: <:>
i 1. Driver <:>
i N 2. Sequencer
——
— AXI | 3. Monitor <:>
uvm_config_db Coverage

2018

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Verification Procedure Document

checkout
files

configure
verification
environment

accellera . DV
© Accellera Systems Initiative 16

SYSTEMS INITIATIVE

Verification Procedure Document

[EIC_IP_CORE_FR_002] spi_cs_n shall assert to logic LOW and remain for
24.5%T,; sk £ 1% when any of the Active State conditions of spi_mosi are
satisfied. (Tspi_sclk = 10 MHz)

[EIC_IP_CORE_FR_005] spi_sclk shall assert to clock signal with the period
10 MHz when any of the Active State conditions of spi_mosi are satisfied.

accellera . DV
© Accellera Systems Initiative 17

SYSTEMS INITIATIVE

Verification Procedure Document

[EIC_IP_CORE_FR_008] spi_mosi shall assert to opcode and data value where;
* Opcode : 0x04
« Data :SPI CONF DATA REG 2(15:0)

within 500*T, .. . £ 1% when SPI CONF DATA REG 2(31) is logic HIGH. (T

s_axi_aclk =100
MHz, SPI CONF DATA REG is register at address 0x8)

accellera . DV
© Accellera Systems Initiative 18

SYSTEMS INITIATIVE

Verification Procedure Document

TC _ProjectName_FunctionalElement _Feature CHECK

N

TC_PRJX_SPI_PORT_CHECK

DESIGN AND VERIF! TION™
accellera o DVEOMN
© Accellera Systems Initiative 19
SYSTEMS INITIATIVE

Verification Procedure Document

TC_PRJX_SPI PORT CHECK

Description

Coverpoints

accellera

© Accellera Systems Initiative 20

Test Steps

EEEEEEEEEEEEEEEEEEEEEEE

Verification Procedure Document

Description

This test case verifies active state of output ports of SPI Master Interface which are listed below.
* spi_cs n
* spi_sclk
* spi_mosi

As test scenario after applied reset, AXI4 Write Transfer to SPI CONF DATA REG 2 register which is located
at address 0x8 with 315t of Write Data set to 1 and (30:0) set to a random value will be initiated. Then, at

required time, active states of spi_cs_n, spi_sclk and spi_mosi output ports are verified.

Pass/Fail Criteria: Assertions and checkers of requirement checking mechanism of test class should

pass.
DESIGN AND VER12|=9A-|T§N“‘
accellera . DV
© Accellera Systems Initiative 21

SYSTEMS INITIATIVE

Verification Procedure Document

Coverpoints

Spi_master_cg: spi_cs_cp
spi_master_cg: spi_opcode cp
spi_master_cg: spi_trans_type_cp
axid_slave cg: axi4 _trans_type cp
reg_cg: spi_conf _reg2 cp

DESIGN AND VERIF! TION™
accellera o DV
© Accellera Systems Initiative 22
SYSTEMS INITIATIVE

Verification Procedure Document

Action

Expected Result

Assertion

Requirement Links

1. Apply clock signal
with period of 100
MHz to sys_clk input.

2. Set reset_n to logic
LOW.

3. Wait for4 to 10
sys_clk cycles.

4. Set reset_n to logic
HIGH

SYSTEMS INITIATIVE

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Verification Procedure Document

Action

Expected Result

Assertion

Requirement Links

5. Initiate AX14 Write
Transfer to address
0x8 with 31t bit of
write datasetto 1
and (30:0) bits of
write data set to
random value.

SYSTEMS INITIATIVE

NNNNNNNNNNNNNNNNNNNNNNN

Verification Procedure Document

Action

Expected Result

Assertion

Requirement Links

6. Perform steps 6.1-
6.3 in parallel
manner

accellers)

6.1 Within
500*sys_clk+ 1%
cycles check
Spi_Mosi.

spi_mosi should
assert
respectively to
opcode and data
byte in order:
Opcode :0x04
Data Byte : (15:0)
bits of write data
initiated in step 5.

EIC_IP_CORE_FR_008

IIIIIIIIIIIIIII

EEEEEEEEEE

IIIIIIIIIIIII

SYSTEMS INITIATIVE

Verification Procedure Document

Action

Expected Result

Assertion

Requirement Links

6.2 Within
500*sys_clk+ 1%
check spi_cs_n.
Keep checking for

24.5*Tspi_sclk* 1%.

spi_cs_n should
assert and

remain at logic
LOW.

eic_ip_core_fr
003 spi_cs n
_check

EIC_IP_CORE_FR_003

6.3 Within

spi_sclk should

eic_ip_core_fr

EIC_IP_CORE_FR_005

accellerd)

SYSTEMS INITIATIVE

500*sys_clk+ 1% asserttoclock | 005 spi sclk
check spi_sclk. signal with check
period of 10
MHz.
o b
DVCON

EEEEEEEEEEEEEEEEEEEEEEE

Requirement Tracing
4

Do all requirements
properly linked in
various components?

Requirements
Document

Simulation
Results

Micro Architecture Verification
Design Document Procedure
Document

Design Source Codes

Verification Source Codes

2018

DESIGN AND VERIFICATION™

accellera DV

© Accellera Systems Initiative 27
SYSTEMS INITIATIVE

Requirement Verification

Verification with:

— Assertion
— Self-Checking

S

2018

3N
DESIGN AND VERIFICATION™

accellera
- © Accellera Systems Initiative 28

SYSTEMS INITIATIVE

Verification with Assertion

EIC_IP_ CORE_FR 100 .o

1

“s _addr_ready shall assert to Ox1 after one clock cycle
slv_en is asserted to Ox1”

DESIGN AND VERIF! TION™
accellera o DVEOMN
© Accellera Systems Initiative 29
SYSTEMS INITIATIVE

Verification with Assertion

cover property (S_ADDR_READY_ASSERT);

property S ADDR_READY_ASSERT;
@(posedge bus_clk)
(Srose(slv_en)) |=> (s_addr_ready);
endproperty

assert property (S _ ADDR_READY_ASSERT)
else Serror(“EIC IP CORE FR 100 has failed.");

accellera -
© Accellera Systems Initiative 30
SYSTEMS INITIATIVE

EEEEEEEEEEEEEEEEEEEEEEE

Verification with Self-Checking Mechanism

EIC_IP_CORE_FR_102

4

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”

 Slave Address : 7b1101010

* Register Address : OxC4

 Write Data Byte in order: OxDO0O, OxC1 and OxAA

IIIIIIIIIIIIIIIIIIIIIII

accellera o DV
© Accellera Systems Initiative 31
SYSTEMS INITIATIVE

accellera

Verification with Self-Checking Mechanism

© Accellera Systems Initiative

32

Task which verifies:

1. Time when i2c_sda is
deasserted after reset.
2. Asserted value of the
i2c_sda

EEEEEEEEEEEEEEEEEEEEEEE

Verification with Self-Checking Mechanism

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”

* Slave Address : 7b1101010

* Register Address : OxC4

* Write Data Byte in order: 0xDO, OxC1 and OxAA

wait(dut_if.reset_n==1);

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset _n is set to logic HIGH with the following conditions:”

* Slave Address : 7b1101010

* Register Address : OxC4

* Write Data Byte in order: 0xDO, OxC1 and OxAA

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”

* Slave Address : 7b1101010

* Register Address : 0xC4

¢ Write Data Byte in order: 0xDO0, 0xC1 and 0xAA

check i2c_write

(EIC_IP_CORE_FR_102,7b1101010, 8hC4, 8hD0, 8hC1, 8hAA, tinit, 5us)

2018

; DESIGN AND VI FICATION™
accellera o DV
© Accellera Systems Initiative 33

oot EUROPE

Verification with Self-Checking Mechanism

4 i i)
check i2c_write
(Req. ID, Slave Addr., Register Addr., Write Data, Starting Time, Req. Time)
. J
“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset _n is set to logic HIGH with the following conditions:”
* Slave Address : 7b1101010
* Register Address : OxC4
* Write Data Byte in order: 0xD0, OxC1 and OxAA
wait(m_i2c_seqg.evO.triggered);
tfinal = Stime;
DESIGN AND V;R’%QA‘L%N it
(accellera . DV
s © Accellera Systems Initiative 34 =T

SYSTEMS INITIATIVE

Verification with Self-Checking Mechanism

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after

reset_n is set to logic HIGH with the following conditions:”
 Slave Address : 7b1101010

* Register Address : OxC4
 Write Data Byte in order: OxDO, OxC1 and OxAA

accellera

SYSTEMS INITIATIVE

wait(m_i2c_seq.evO.triggered);

slv_addr = m_i2c_seq.data_buf;

wait(m_i2c_seq.evO.triggered);

© Accellera Systems Initiative 35

DESIGN AND VERIFICATION™

DVI::I:IN

Verification with Self-Checking Mechanism

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”
 Slave Address : 7b1101010

* Register Address : 0xC4
* Write Data Byte in order: 0xD0, 0xC1 and OxAA

— Register Address = reg_addr

— First Write Data Byte = wr_data[0]

— Second Write Data Byte - wr_data[1]
— Third Write Data Byte 2 wr_data[2]

DESIGN AND VERIQFQAI'%Nm
accellera . DV
© Accellera Systems Initiative 36

SYSTEMS INITIATIVE

Verification with Self-Checking Mechanism

“i2c_sda shall assert to 12C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”

* Slave Address : 7b1101010

* Register Address : 0xC4

* Write Data Byte in order: 0xDO0, 0xC1 and 0xAA

if(({Slave Addr, 1b0} == slv_addr) && (Register Addr == reg_addr) &&
(Write Data [0] == wr_data[0]) && (Write Data [1] == wr_data[1]) &&
(Write Data |2] == wr_data|2]) && (ttinal — tinit <= Req. Time))

‘'uvm_info(“req_pass”, Ssprint(“Requirement: %s has passed”, Req.ID), UVM_LOW)
else
‘uvm_error(“req_fail”, Ssprint(“Requirement: %s has failed”, Req. ID))

accellera o DV
© Accellera Systems Initiative 37 m

SYSTEMS INITIATIVE

Verification with Self-Checking Mechanism

EIC_IP_CORE_FR 103

4

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:

 reset nis setto logic HIGH

 AHB Write Transfer to Control Register address is completed

DESIGN AND VERIF! T ™
accellera o DV
© Accellera Systems Initiative 38
SYSTEMS INITIATIVE

Verification with Self-Checking Mechanism

Register Class

class Control_Reg extends uvm_reg;

function new(string name = “Control_Reg”)
super.new(name, 16, UVM_NO_COVERAGE)

endfunction

virtual function void build();
Control_Reg = uvm_reg_field::type_id::create(“Control_Reg”);

Control_Reg.configure(this, 16, 0, “RW”, 0, 16’h0000, 1, 1, 1);~__
endfunction 4 ‘ T \ T

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 39

SYSTEMS INITIATIVE

Verification with Self-Checking Mechanism

In the test class register block is
defined

REG block m_reg_block;

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:

* reset_nis set to logic HIGH

» AHB Write Transfer to Control Register address is completed

wait(dut_if.reset_n==1);

m_reg_block.Control_Register h.write(status, write_value);

2018

DESIGN AND VI ICATION™

accellera o DV
© Accellera Systems Initiative 40 m

SYSTEMS INITIATIVE

S
Verification with Self-Checking Mechanism

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:

* reset _nis set to logic HIGH

* AHB Write Transfer to Control Register address is completed

get value = m_reg_block.Control_Register h.get(status);

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:

* reset nis set to logic HIGH

* AHB Write Transfer to Control Register address is completed

repeat(2) @(posedge bus if.clk);

m_reg_block.Control_Register h.read(status, read_value);

2018

DESIGN AND VI FICATION™

accellera o DV
© Accellera Systems Initiative 41 m

SYSTEMS INITIATIVE

e
Verification with Self-Checking Mechanism

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:

* reset nis set to logic HIGH

* AHB Write Transfer to Control Register address is completed

If(read_value == get_value)
‘'uvm_info(“req_pass”, Ssprint(“Requirement EIC_IP_ CORE_FR_103

has passed”), UVM_LOW)
else

‘uvm_error(“req_fail”, Ssprint(“Requirement: EIC_IP_CORE_FR_103
has failed”, Req. ID))

2018

DESIGN AND VI FICATION™

accellera - DV
© Accellera Systems Initiative 42 m

SYSTEMS INITIATIVE

Verification of Assertion with SVA Unit

Source:
Socianu.A & Ciocirlan.l (2015, April 29)
SystemVerilog Assertion Verification with SVAUnit
Retrieved from: https://www.amig.com

SVAUnit Test Suite

|
SVALUnit Test |
| SVWA interface handle | Sute
[
Interface
pre_test0 el I coniaining
 — i Reports || SvA

(2018

DESIGN AND VERIFICATION“‘

DVI:I:IN

CONFERENCE AND EXH!EITION

(aébellera

SYSTEMS INITIATIVE

© Accellera Systems Initiative 43

Verification of Assertion with SVA Unit

Is assertion working
as specified?

DESIGN AND VERIF] TION™
accellera . DVCOIN
© Accellera Systems Initiative 44 :
SYSTEM »

S INITIATIVE

SYSTEMS INITIATIVE

Verification of Assertion with SVA Unit

SVAUnit checks

CHECK_SVA_EXISTS

CHECK_SVA_ENABLED|CHECK_SVA _PASSED

CHECK_SVA _FAILED

I2C_CLK_SVA

W = =

© Accellera Systems Initiative

45

2018

DESIGN AND VERIFICATION™

DVCON

EEEEEEEEEEEEEEEEEEEEEEE

Coverage Analysis

We need metrics for...

 CONFIDENCE
CULEVEL

DESIGN AND VERI2FQA-L'§N“‘
accellera . DV
© Accellera Systems Initiative 46

SYSTEMS INITIATIVE

Coverage Analysis

* Functional Coverage
* Code Coverage

* Other Coverage Types
— Linting (quality of RTL code)
— Clock Domain Crossing (metastability)

accellera . DV
© Accellera Systems Initiative 47

SYSTEMS INITIATIVE

Functional Coverage

Design Do you hit Do they Functional

Behaviours them? violate? Coverage

(2018

DESIGN AND VER IFICATION™

© Accellera Systems Initiative 48

SYSTEMS INITIATIVE

Functional Coverage

cover property (S_ADDR_READY_ASSERT) ; .

Coverage

property S_ADDR_READY_ASSERT;
@(posedge bus_clk)

($rose(slv_en)) |=> (s_addr_ready);
endp roperty Properties

Design
Behaviours

assert property (S_ADDR_READY_ASSERT) QOﬂ“ﬁ
else $error(“EIC_IP-CORE_FR_100 is violate
failed.");

aamﬂkma

- © Accellera Systems Initiative 49
SYSTEMS INITIATIVE

2078

DESIGN AND VERIFICATION“‘

DVGCON

CONFERENCE AND EXHIBITION

EUROPE]

Functional Coverage

-

mas_trans_cp \

bins single_wr

interconnect_cg

Crossed

X
bins single_rd
bins burst_wr
bins burst_rd

o

slv_en_cp

* binsslv.en O
* binsslv en_1
* binsslv_en_ 2

N

_/

SYSTEMS INITIATIVE

© Accellera Systems Initiative

50

2018

DESIGN AND VERIFICATION™

DVGCON

EEEEEEEEEEEEEEEEEEEEEEE

Functional Coverage

Assertions

Test Plan :
(.xml document) Functional Coverage
Analysis Report

(.html documet)

Covergroup
Coverpoints

vVvVvVYyY

2018

DESIGN AND VERIFICATION™

accellera . DVCON
— © Accellera Systems Initiative 51

SYSTEMS INITIATIVE

Functional Coverage

3.2.1 TC_PRIX_SPI_PORT_CHECK 1 (100
spi_master_cg:spi_cs_cp
spi_master_cg:spi_opcode cp
3.2.1.1 |TC_PRIJX_SPI_PORT_CHECK_ 1cp spi_master_cg:spi_trans_type cp CoverPoint | 1 |100
axi4_slave cg:axi4_trans_type cp
reg_cg:spi_conf_reg2 cp
eic_ip_core_fr_003 spi_cs_n_check
eic_ip_core_fr_005_spi_sclk_check
eic_ip_core_fr_003 spi_cs_n_cov
eic_ip_core_fr_005_spi_sclk_cov

3.2.1.2 |TC_PRIX_SPI_PORT CHECK 2a Assertion | 1 |100

3.2.1.3 |TC_PRIX_SPI_PORT_CHECK_3cd Directive | 1 |100

Coverage Summary by Testplan Section:

Scope « Coverage « % of Goal «
3.2.1 TC_PRJX_SPI PORT CHECK 100.00% 100.00%
3.2.1.1 TC PRJX SPI PORT CHECK I1cp 100.00% | 100.00%
3.2.1.2 TC PRJX SPI PORT CHECK 2a | 100.00% | 100.00%
3.2.1.3 TC_PRJX_SPI PORT CHECK 3cd 100.00% | 100.00%

DESIGN AND VERIQFQA-LéN“‘
accellera . DV
© Accellera Systems Initiative 52

SYSTEMS INITIATIVE

Code Coverage

Statement—Did we cover every statement?

Branch—Did we cover every IF branch and CASE entry?

Finite State Machine—Did we cover all states and transitions?
Expression—Did we fully test our single-bit expressions?

Condition—Did we test all the conditions in our IF statements?

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

53

IIIIIIIIIIIIIIIIIIIIIII

NNNNNNNNNNNNNNNNNNNNNNN

Code Coverage

Statement Coverage

- process (a)

Statement

Coverage begin
z<="'0";if (a=0) then z <=1

end process;

(2018

—— —\ N AND VERIFICATION
P

(agcellera . DVCON

N © Accellera Systems Initiative 54 EUROPE

Code Coverage

Branch Coverage

if (a = ‘0’) then case ais
z<="'1" when ‘0" =>z<="1";

else Rl \Wwhen ‘1’ =>z<=0":

-~ . Coverage
z <="'0"; N
end if;

when others =>z <= ‘0’;
end case;

=

@"ci‘e//?fa
\,ﬁ-_,;r;u —

© Accellera Systems Initiative 55

Code Coverage

Reset=1 A=0 FSM Coverage

Transition Coverage

State Coverage

DESIGN AN VERIQFQAl'éN“‘
accellera - DY
© Accellera Systems Initiative 56 ROPE

SYSTEMS INITIATIVE

Code Coverage

Condition Coverage

if (a2 or b) then

e Conditionl1l->a=1

[<=C+1;
end if;

e Condition2->b=1

2018
e —\ IGN AND VERIFICATIO
-
(accellera o DVCON
N © Accellera Systems Initiative 57 EUROPE

Code Coverage

Expression Coverage

A Bz N A 5 7
0 0 0 0 0 0

EEEEEEEEEEEEEEEEEEEEEEE

© Accellera Systems Initiative 58 EUROPE]

1 0 1 0 1 1
o218
DVCOIN

(accellera

Code Coverage

Why corresponding statement is not covered?]

[Why corresponding IF branch or CASE entry is |
not covered?

Why corresponding state or transition is not
covered?

S

Why corresponding single-bit expression is not |
covered?

J

Why corresponding condition in related IF is
not covered?

DESIGN AND VER|2|:9A1'§NW
a@ DV DN

e . CONFERENCE AND EXHIBITION
© Accellera Systems Initiative 59
SYSTEMS INITIATIVE

Code Coverage

 Reason of the code coverage holes:
— Unused Codes Lines
— Missing Test Scenario

2018

DESIGN AND VERIFICATION™

accellera . DV
© Accellera Systems Initiative 60

SYSTEMS INITIATIVE

120
100
80
60
40

20

SYSTEMS INITIATIVE

Reg_01.10.2018

Code Coverage

Code Coverage Improvement Graphics

Reg_03.10.2018

Reg_06.10.2018

B Statement ™ Branch ™ Expression

© Accellera Systems Initiative

Reg_10.10.2018

2018

DESIGN AND VI FICATION™

DVGCON

CONFERENCE AND EXHIBITION

EUROPE

RTL Analysis

R : ; ~ "New RTL
equirements
- 3 Party IP e
Capture y Verification
—Reuse IP

e RTL Static Analysis
* Clock Domain Synthesis
Crossing Analysis

(accellera

SYSTEMS INITIATIVE

EEEEEEEEEEEEEEEEEEEEEEE

© Accellera Systems Initiative 62 EUROP 5557’—\

RTL Analysis

Language Clock and Reset

Check Signals Check :
Coding Style & Clock Domam
Analysis Analysis

Run Simulation

and Synthesis Static Analysis pummmmmnd| Run Basic Checks
Analysis

Long if-then-else / \ R:n Tes.et
: nalysis
AGELYELE FSM Run Structural Y
Analysis Checks
2018

DESIGN AND VI FICATION™

accellera o DVEOMN
© Accellera Systems Initiative 63 m

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

RTL Analysis — Static Checks

[m] No X-source problems ~ . R

(8] Clocks Package: DO-254

[1Clock Domain CrDSSI_HQS Description: This package includes checks that aid in compliance with the DO-

[] Advanced Clock Environment 254 militarv standard.

[|Coding style

[m] Coding conventions Checks:

[m] Assignment Checks

(@] Simulation/Synthesis * GEST (Gated reset)

Mo implied_latches * HCCC (Do not hard-code constants)

[m] Case statements e REGO (Register all module outputs)

[m] No size conflicts * UNREACHABLE STATE (Report Unreachable states)

[|Naming * MCD (No case default)

[m] Signal Identification * MDA (Missing case default assignment)

[|Comments * CSL (Complete sensitivity lists)

[m]FSM Checks * MEB (Missing else block)

[|Miscellaneous checks * ETB (Empty then block)

[]SDC Verification » LEC (Little endian checks)

[m] Cycle Based Simulation s CCLP (Infinite and 0-count loops)

(@] Input IP * SLCC (Separate lines for commands)

[m] New RTL o INT_TRI (Internal tristate objects)

[®] Golden RTL o COMMENT END_STMNTS (Comment end statements)

[m] DFT s MCA (Missing case item assignment)

[m] Principles of Verifiable RTL * MIA (Missing if assignment)

[®] Reuse Methodology Manual » LATCH CEREATED (Report on every latch created or inferred)

[m] Semiconductor Reuse Standard « COMMENT WET DEC (Comment net declarations)

[m] DO-254 » STATE VAR WNAME (Run name analysis on FSM state variable names)

[m]STARC * COMMENT PORT DEC (Comment port declarations)

[m] UltraFast Design Methodology for Vivado = BEST (All flip-flops resettable)

[®] Quartus Il Best Practices « RESET POLARITY (Check reset polarity consistency) 2018

[m] Microsemi RTG4 Best Practices v » FOREIGN LANGUAGE KWD (Report usage of Foreign Language v VNIDZVEEAITIW

L. . mERENCE AND EXHIBITION

© Accellera Systems Initiative 64

TL Analysis — FSM Checks

575 FLU5S: begin
576 // To Fix Uncomment Section below
577 /-
578 if (1if_stall && !id_freeze) begin
570 state <= #1 IDLE;
580 except_type == #1 "OR1200_EXCEPT_NONE;
581 extend_flush_Tlast == #1 1"hb0;
582 end
@ 583 else state <= #1 FLUG;
584
585 -
W 586 state <= #1 FLU5; // To fix comment it
587
@ 588 end
589
590
591 if (1if_stall && 1id_freeze) hegin
W 592 state <= #1 IDLE;
W 593 except_type == #1 "OR1200_EXCEPT_NONE:;
= W 594 extend_flush_last == #1 1"b0;
E;,r 545 end . .
= 306 // else state <= #1 FLUB; // To fix uncomment it
DI 547 end
@ ﬁ 598 endcase
= 599 end
! 600 and
= 601
= {0 i IR SR i, [,

» 2018

DESIGN AND VERIFICATION™
ccellera DVCON
acce era .. . CONFERENCE AND EXHIBITION
© Accellera Systems Initiative 65

SYSTEMS INITIATIVE

Paths

Search: |All

RTL Analysis — Long Path Analysis

Path Type Length From

To

DFF To DFF v >= i

DFF to DFF: cordic.angle_s -= cordic.sinout_s: 22
DFF to DFF: cordic.angle_s -> cordic.cosout_s: 22
DFF to DFF; cordic.sinout_s - > cordic.tanout_s: 5
DFF to DFF; cordic.cosout_s -= cordic.tanout_s: 5
DFF to DFF; cordic.state -> cordic.sinout_s; 4
DFF to DFF; cordic.state -> cordic.cosout_s; 4
DFF to DFF: cordic.state - > cordic.angle_s: 4

Path:

S S e = S S SO PP

cordic.angle_s
cordic.U1.buf_5
cordicU1.z0.s_11_3
cordicUl.add_13
cordic.Ul.add_13_8.0
cordic.Ul.concat_0_11_0
cordic.UT.mux_14
cordic.Ul.buf 15

Enable Cross Probing to RTL?

SYSTEMS INITIATIVE

; 58 wire[11:0] z7_s; s
59 wire[11:0] z8_s;
60 wire[11:0] z9_s;
61 wire[11:0] zl0_s;
a2
63 assign yo_s = {12{1'b0}} ;
64 assign z0_s = angle ;
65 assign x1_s = xinit_c ;
66 assign yl_s = ({z0_s[11]) == 1'b0) 7 xl1_s (~x1 %) ;
67 assign 2zl s = ({z0_s[11]) == 1'b0) 7 z0_s atan0_s Zz0_s + atan0_s ;
68 assign x2_s = ((21_s[11]) == 1'b0) 7 x1_s ({y1_s[11], y1_s[11], y1_s[WIDTH - 2:1]3}) : »
69 assign y2_s = ((21_s[11]) == 1'b0) 7 yl_s ({x1_s[11], x1_s[11], x1_s[WIDTH - 2:113}) : y
_ 70 assign z2_s = ((21_s[11]) == 1'b0) 7 zl_ s atanl_s zl s + atanl_s ;
@ 71 assign x3_s = ((z2_s[11]) == 1'b0) 7 x2_s - ({y2_s[11], y2_s[11], y2_s[11], y2_s[WIDTH -
o 72 assign y3_s = ((22_s[11]) == 1'b0) 7 y2_s ({x2_=s[11], x2_s[11], x2_s[11], xZ2_s[WIDTH -
D 73 assign z3_s = ((22_s[11]) == 1'b0) 7 z2_s atanz_s ZZ2_s5 + atanZ_s ;
8 i assign x4_s = ((23_s[11]) == 1'b0) ? x3_s - ({y3_s[11], y3_s[11], y3_s[11], y3_s[11], v3._ :2()]8
é 75 assign y4_s = ((23_s[11]) == 1'b0) 7 y3_s + ({x3_s[11], x3_s[11], x3_s[11], x3_5[11], 3. ,coicnANDVERIFICATION™
g 76 assign z4_s = ((23_s[11]) == 1'b0) 7 z3_s atan3_s Z3_s + atan3_s ; DVBDN
L. . ~ONFERENCE AND EXHIBITION
© Accellera Systems Initiative 66

RTL Analysis

2016 Industry research reports
Clocking/CDC Errors are the #2
cause of respins

accellera . DV
© Accellera Systems Initiative 67

SYSTEMS INITIATIVE

clk_i_group

<05,7U\OS,106U

45,20

dwb_clk_i_group

lOS,3U

iwb_clk_i_group

SYSTEMS INITIATIVE

0S,100U

RTL Analysis - CDC

ck_i[>

clk_i

clk

dwb_biu
E dwb_biu.biu_err_o bi
iu_err_o
i1 bp5_|_246 i _err_ba
ul
s¢l bps_i_250 biu_err_cnt

dwb_biu.clk

outdwb_biu.n514 data

=l
’_

dwb_dk_i[> aw

wh_clk_i

dwb_biu.whb_clik_i

reset

q

T

wh_err_cnt

—data
= Clk

© Accellera Systems Initiative

b_ck_i

reset

q

¥

i bps_i 282
out
in

i bps_i 283 bps_i 284
I out 0~ out
_ | ‘chwb_BiLL s L‘/

68

or1200_wb_biu

2018

DESIGN AND VERIFICATION™

DVCON

CONFERENCE AND EXHIBITION

Questions

2018

N AND VERIFICAT

accellera DVCON

SYSTEMS INITIATIVE

