
Requirements Driven Design Verification
Flow Tutorial

Ateş BERNA – Managing Partner

Ahmet JORGANXHI – Design & Verification Eng.

© Accellera Systems Initiative 1

About Electra IC

• Founded in 2014

• Headquarter in Istanbul, Turkey

• Branch office in Ankara

• Total 20 people

• ASIC/FPGA D&V Services

• ASIC/FPGA/EmbSys Training
Services

© Accellera Systems Initiative 2

Introduction

© Accellera Systems Initiative 3

Main Objectives of
Tutorial

Requirement
Capture

Advanced Verification
Methodology

RTL Analysis

Verification
Procedure
Generation

Verification with
Assertion and Self-

Checking Mechanism

Verifying
Assertions with

SVAUnit

Functional and
Code Coverage

Requirement

© Accellera Systems Initiative 4

Requirements are definitions of “what”
hardware must do.

How?

Requirement

© Accellera Systems Initiative 5

Source:
Airborne Electronic Hardware Design Assurance

R. Fullton & R.Vandermolen, 2015

Properly Captured Requirement Format

© Accellera Systems Initiative 6

The {output or verifiable aspect}
shall

{always, unconditionally, only}
{assert, deassert, set to value}

{before, after, when, during, within}
{xnsec, the next rising edge of a clock, read/write asserts low}

when {inputs are set to a combination of high/low,
a sequence of events has occurred or

a timed period elapses}

Source:

Airborne Electronic Hardware Design Assurance

R. Fullton & R.Vandermolen, 2015

Properly Captured Requirement Sample

© Accellera Systems Initiative 7

EIC_IP_CORE_FR_001:

The {dscrt_out}

shall

{always}

{assert to logic HIGH}

{within 40 nanoseconds}

when {dscrt_in is asserted to logic HIGH}

Requirement Tracing

© Accellera Systems Initiative 8

Introduction to Verification

© Accellera Systems Initiative 9

Is the Design Under
Test working

correctly?

Design Under Test

Goals of Verification

© Accellera Systems Initiative 10

Verification
goals

Ensure that design
behaves as
expected

Ensure that design does
not show any

unexpected behavior
under illegal and error

conditions

Verification Methodologies Comparison

© Accellera Systems Initiative 11

SV/UVM Verification Methodology

• Sequence Methodology

• Factory Mechanism

• Config Mechanism

• UVM Phase

• Modularity and Re-Usability

© Accellera Systems Initiative 12

Verification Procedure Document

• Verification Environment

• For each testcase:

– Description

– Coverpoints

– Test Steps

© Accellera Systems Initiative 13

Verification Procedure Document

© Accellera Systems Initiative 14

AXI4-Lite Slave
Interface

SPI Master
InterfaceInput Pins Output Pins

Verification Procedure Document

© Accellera Systems Initiative 15

Design
Under

TestIn
te

rf
ac

e

Base Test
EnvironmentEnvironment

uvm_config_db

AXI
VIP

Config

SPI VIP
Config

SPI
Sequence

SPI
Coverage

SPI Agent:
1. Driver
2. Sequencer
3. Monitor

AXI
Sequence

AXI
Coverage

AXI Agent:
1. Driver
2. Sequencer
3. Monitor

Reg
Model

Verification Procedure Document

© Accellera Systems Initiative 16

How to

checkout
files

configure
verification

environment

run
test case

Verification Procedure Document

© Accellera Systems Initiative 17

[EIC_IP_CORE_FR_002] spi_cs_n shall assert to logic LOW and remain for
24.5*Tspi_sclk ± 1% when any of the Active State conditions of spi_mosi are
satisfied. (Tspi_sclk = 10 MHz)

[EIC_IP_CORE_FR_005] spi_sclk shall assert to clock signal with the period
10 MHz when any of the Active State conditions of spi_mosi are satisfied.

Verification Procedure Document

© Accellera Systems Initiative 18

[EIC_IP_CORE_FR_008] spi_mosi shall assert to opcode and data value where;

• Opcode : 0x04

• Data : SPI CONF DATA REG 2(15:0)

within 500*Ts_axi_aclk ± 1% when SPI CONF DATA REG 2(31) is logic HIGH. (Ts_axi_aclk = 100
MHz, SPI CONF DATA REG is register at address 0x8)

Verification Procedure Document

TC_ProjectName_FunctionalElement_Feature_CHECK

TC_PRJX_SPI_PORT_CHECK

© Accellera Systems Initiative 19

Verification Procedure Document

© Accellera Systems Initiative 20

TC_PRJX_SPI_PORT_CHECK

Description Coverpoints Test Steps

Verification Procedure Document

Description

© Accellera Systems Initiative 21

This test case verifies active state of output ports of SPI Master Interface which are listed below.
• spi_cs_n
• spi_sclk
• spi_mosi

As test scenario after applied reset, AXI4 Write Transfer to SPI CONF DATA REG 2 register which is located
at address 0x8 with 31st of Write Data set to 1 and (30:0) set to a random value will be initiated. Then, at
required time, active states of spi_cs_n, spi_sclk and spi_mosi output ports are verified.

Pass/Fail Criteria: Assertions and checkers of requirement checking mechanism of test class should
pass.

Verification Procedure Document

Coverpoints

© Accellera Systems Initiative 22

spi_master_cg: spi_cs_cp
spi_master_cg: spi_opcode_cp
spi_master_cg: spi_trans_type_cp
axi4_slave_cg: axi4_trans_type_cp
reg_cg: spi_conf_reg2_cp

Verification Procedure Document

Action Expected Result Assertion Requirement Links

1. Apply clock signal
with period of 100
MHz to sys_clk input.

2. Set reset_n to logic
LOW.

3. Wait for 4 to 10
sys_clk cycles.

4. Set reset_n to logic
HIGH

Verification Procedure Document

Action Expected Result Assertion Requirement Links

5. Initiate AXI4 Write
Transfer to address
0x8 with 31st bit of
write data set to 1
and (30:0) bits of
write data set to
random value.

Verification Procedure Document

Action Expected Result Assertion Requirement Links

6. Perform steps 6.1-
6.3 in parallel
manner

6.1 Within
500*sys_clk± 1%
cycles check
spi_mosi.

spi_mosi should
assert
respectively to
opcode and data
byte in order:
Opcode : 0x04
Data Byte : (15:0)
bits of write data
initiated in step 5.

EIC_IP_CORE_FR_008

Verification Procedure Document

Action Expected Result Assertion Requirement Links

6.2 Within
500*sys_clk± 1%
check spi_cs_n.
Keep checking for
24.5*Tspi_sclk± 1%.

spi_cs_n should
assert and
remain at logic
LOW.

eic_ip_core_fr
_003_spi_cs_n
_check

EIC_IP_CORE_FR_003

6.3 Within
500*sys_clk± 1%
check spi_sclk.

spi_sclk should
assert to clock
signal with
period of 10
MHz.

eic_ip_core_fr
_005_spi_sclk_
check

EIC_IP_CORE_FR_005

Requirement Tracing

© Accellera Systems Initiative 27

Do all requirements
properly linked in

various components?

Requirement Verification

Verification with:

– Assertion

– Self-Checking

© Accellera Systems Initiative 28

Verification with Assertion

© Accellera Systems Initiative 29

“s_addr_ready shall assert to 0x1 after one clock cycle
slv_en is asserted to 0x1”

EIC_IP_CORE_FR_100

Verification with Assertion

© Accellera Systems Initiative 30

cover property (S_ADDR_READY_ASSERT);

property S_ADDR_READY_ASSERT;
@(posedge bus_clk)
($rose(slv_en)) |=> (s_addr_ready);
endproperty

assert property (S_ADDR_READY_ASSERT))
else $error(“EIC_IP_CORE_FR_100 has failed.");

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 31

“i2c_sda shall assert to I2C Write Transfer Sequence within 5us after
reset_n is set to logic HIGH with the following conditions:”

• Slave Address : 7b1101010
• Register Address : 0xC4
• Write Data Byte in order: 0xD0, 0xC1 and 0xAA

EIC_IP_CORE_FR_102

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 32

Task which verifies:
1. Time when i2c_sda is
deasserted after reset.
2. Asserted value of the
i2c_sda

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 33

wait(dut_if.reset_n == 1);

tinit = $time;

check_i2c_write
(EIC_IP_CORE_FR_102,7b1101010, 8hC4, 8hD0, 8hC1, 8hAA, tinit, 5us)

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 34

check_i2c_write
(Req. ID, Slave Addr., Register Addr., Write Data, Starting Time, Req. Time)

wait(m_i2c_seq.ev0.triggered);
tfinal = $time;

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 35

wait(m_i2c_seq.ev0.triggered);
slv_addr = m_i2c_seq.data_buf;
wait(m_i2c_seq.ev0.triggered);

Verification with Self-Checking Mechanism

– Register Address reg_addr

– First Write Data Byte wr_data[0]

– Second Write Data Byte wr_data[1]

– Third Write Data Byte wr_data[2]

© Accellera Systems Initiative 36

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 37

if(({Slave Addr, 1b0} == slv_addr) && (Register Addr == reg_addr) &&
(Write Data [0] == wr_data[0]) && (Write Data [1] == wr_data[1]) &&

(Write Data [2] == wr_data[2]) && (tfinal – tinit <= Req. Time))
`uvm_info(“req_pass”, $sprint(“Requirement: %s has passed”, Req.ID), UVM_LOW)

else
`uvm_error(“req_fail”, $sprint(“Requirement: %s has failed”, Req. ID))

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 38

Control Register should assert to write data byte of the AHB Write
Transfer within 2 clk cycles, after all of the following conditions are
satisfied:
• reset_n is set to logic HIGH
• AHB Write Transfer to Control Register address is completed

EIC_IP_CORE_FR_103

Verification with Self-Checking Mechanism

Register Class

class Control_Reg extends uvm_reg;

function new(string name = “Control_Reg”)

super.new(name, 16, UVM_NO_COVERAGE)

endfunction

virtual function void build();

Control_Reg = uvm_reg_field::type_id::create(“Control_Reg”);

Control_Reg.configure(this, 16, 0, “RW”, 0, 16’h0000, 1, 1, 1);

endfunction

© Accellera Systems Initiative 39

size

lsb has_reset

reset
access
type

volatility

is_rand

individually access

Register width

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 40

In the test class register block is
defined

REG block m_reg_block;

wait(dut_if.reset_n == 1);
m_reg_block.Control_Register_h.write(status, write_value);

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 41

get_value = m_reg_block.Control_Register_h.get(status);

repeat(2) @(posedge bus_if.clk);
m_reg_block.Control_Register_h.read(status, read_value);

Verification with Self-Checking Mechanism

© Accellera Systems Initiative 42

If(read_value == get_value)
`uvm_info(“req_pass”, $sprint(“Requirement EIC_IP_CORE_FR_103

has passed”), UVM_LOW)
else

`uvm_error(“req_fail”, $sprint(“Requirement: EIC_IP_CORE_FR_103
has failed”, Req. ID))

Verification of Assertion with SVA Unit

© Accellera Systems Initiative 43

Source:

Socianu.A & Ciocirlan.I (2015, April 29)
SystemVerilog Assertion Verification with SVAUnit

Retrieved from: https://www.amiq.com

Verification of Assertion with SVA Unit

© Accellera Systems Initiative 44

Is assertion working
as specified?

Verification of Assertion with SVA Unit

© Accellera Systems Initiative 45

Coverage Analysis

We need metrics for…

© Accellera Systems Initiative 46

Coverage Analysis

• Functional Coverage

• Code Coverage

• Other Coverage Types

– Linting (quality of RTL code)

– Clock Domain Crossing (metastability)

© Accellera Systems Initiative 47

Functional Coverage

© Accellera Systems Initiative 48

Design
Behaviours

Do you hit
them?

Do they
violate?

Functional
Coverage

Functional Coverage

© Accellera Systems Initiative 49

Assertions

Properties

Coverage

cover property (S_ADDR_READY_ASSERT);

property S_ADDR_READY_ASSERT;
@(posedge bus_clk)
($rose(slv_en)) |=> (s_addr_ready);
endproperty

assert property (S_ADDR_READY_ASSERT)
else $error(“EIC_IP-CORE_FR_100 is
failed.");

Design
Behaviours

Do you
hit

them?

Do they
violate?

Functional Coverage

© Accellera Systems Initiative 50

interconnect_cg

• bins single_wr
• bins single_rd
• bins burst_wr
• bins burst_rd

• bins slv_en_0
• bins slv_en_1
• bins slv_en_2

mas_trans_cp slv_en_cp

Crossed

Functional Coverage

© Accellera Systems Initiative 51

Test Plan
(.xml document)

Assertions

Covergroup
Coverpoints

Functional Coverage
Analysis Report
(.html documet)

Functional Coverage

© Accellera Systems Initiative 52

Code Coverage

• Statement—Did we cover every statement?

• Branch—Did we cover every IF branch and CASE entry?

• Finite State Machine—Did we cover all states and transitions?

• Expression—Did we fully test our single-bit expressions?

• Condition—Did we test all the conditions in our IF statements?

© Accellera Systems Initiative 53

Code Coverage

Statement Coverage

© Accellera Systems Initiative 54

process (a)

begin

z <= ‘0’; if (a = 0) then z <= ‘1’;

end process;

Line
Coverage

Statement
Coverage

Code Coverage

Branch Coverage

© Accellera Systems Initiative 55

if (a = ‘0’) then
z <= ‘1’;

else
z <= ‘0’;

end if;

case a is

when ‘0’ => z <= ‘1’;

when ‘1’ => z <= ‘0’;

when others => z <= ‘0’;

end case;

Branch
Coverage

Code Coverage

FSM Coverage

© Accellera Systems Initiative 56

IDLE

S1
Z = 1

S2
Z = 0

A = 0

A = 1

B = 1

A = 1

Transition Coverage

State Coverage

Reset = 1

Code Coverage

Condition Coverage

•

© Accellera Systems Initiative 57

if (a or b) then

Z <= C + 1;

end if;

• Condition 1 -> a = 1

• Condition 2 -> b = 1

Code Coverage

Expression Coverage

© Accellera Systems Initiative 58

Z <= A or B;

A B Z

0 0 0

1 0 1

A B Z

0 0 0

0 1 1

Code Coverage

© Accellera Systems Initiative 59

Why corresponding statement is not covered?

Why corresponding IF branch or CASE entry is
not covered?

Why corresponding state or transition is not
covered?

Why corresponding single-bit expression is not
covered?

Why corresponding condition in related IF is
not covered?

Code Coverage

• Reason of the code coverage holes:

– Unused Codes Lines

– Missing Test Scenario

© Accellera Systems Initiative 60

Code Coverage

© Accellera Systems Initiative 61

RTL Analysis

© Accellera Systems Initiative 62

Requirements
Capture

New RTL

3rd Party IP

Reuse IP

Verification

• RTL Static Analysis
• Clock Domain

Crossing Analysis
Synthesis

P&R

RTL Analysis

© Accellera Systems Initiative 63

Static Analysis

Language
Check

Clock and Reset
Signals Check Clock Domain

Analysis

Run Basic Checks

Run Reset
Analysis

Run Structural
Checks

FSM
Analysis

Long if-then-else
Analysis

Run Simulation
and Synthesis

Analysis

Coding Style
Analysis

RTL Analysis – Static Checks

© Accellera Systems Initiative 64

RTL Analysis – FSM Checks

© Accellera Systems Initiative 65

RTL Analysis – Long Path Analysis

© Accellera Systems Initiative 66

RTL Analysis

© Accellera Systems Initiative 67

2016 Industry research reports
Clocking/CDC Errors are the #2

cause of respins

RTL Analysis - CDC

© Accellera Systems Initiative 68

Questions

© Accellera Systems Initiative 69

