
Reduce, Reuse, Reverify: An efficient approach to transition
formal verification environments from PCIe Gen6 to Gen7

Zahid Fazal, Design Engineer-II​

Moola Jeevan Chaitanya Goud, Design Engineer-I​

Hamish Hendry, Design Engineering Group Director​

Sakthivel Ramaiah, Design Engineering Architect

Introduction

Problem Statement

Implementation

Results and Benefits

Summary

Solution

Agenda

Background
• PCI Express (PCIe) is a high-speed serial interface standard used in modern computing

systems.

• Each generation of PCIe doubles the data rate: Gen6: 64 GT/s & Gen7: 128 GT/s

Verification Strategy
• Formal Verification applied to numerous blocks within previous Gen5 and Gen6 controllers

• Formal proven to be highly effective at both bug detection and coverage closure

• However, formal environments are costly to build and tune for each new generation

Opportunity

• Efficient reuse of PCIe Gen6 formal environments for Gen7 critical to:

• Reduce environment development time

• Lower verification cost

• Accelerate bug detection

Introduction

Core Problems
• Gen6 formal environments are not directly compatible with Gen7 designs due to data rate

mismatch (64 GT/s vs. 128 GT/s).
• Datapath widths are different between generations

• Complex assertions, constraints and auxiliary code structured to assume a specific number of
bytes per clock cycle. Not a simple change in parameter value to migrate most environments.

Consequences of Direct Reuse
• False failures in formal checks and invalid property triggering

Verification Challenges

• Rebuilding Gen7 formal environments from scratch is:

• Time-consuming , Resource-intensive, Risk-prone

• Aggressive test chip milestone date

• Changes in verification team who are not familiar with existing environments

Problem Statement

Solution - A gearbox method
• Use the gearbox technique to reuse the Gen6 checker, which operates on a fast clock. The DUT is

a Gen7 design that runs on a slow clock. Note that the data width has doubled in Gen7.

Why Gearbox?
Parameterization = High Risk

- 1000's of lines of tightly coupled Gen6 code
- Complex FSM aux code, assertions
- Refactoring → requires heavy revalidation

Time-critical: Gen7 test chip near code freeze

Gearbox Advantages
- Acts as translation layer between Gen7

DUT & Gen6 formal environment.
- Preserves existing verification logic
- Minimal code changes, faster onboarding
- Maintains assertion quality & coverage

Outcome - Faster turnaround under stringent timelines & No compromise on verification quality

• Role in PCIe PCS
• Positioned at the frontline of the Physical Layer

• Receives unaligned 128-bit data from PMA

• Ensures block boundary recovery and protocol compliance before

passing data upstream

• Key Functionalities
• Data Alignment & Boundary Recovery

• Detect EIEOS markers as per PCIe Gen7 spec

• Realign 128-bit data to byte and block boundaries

• Maintain dynamic alignment FSM for lock recovery

• Skip Detection

• Identify SKP ordered sets for clock compensation

• Error Correction

• Detect anomalies and apply spec-defined correction schemes

• Design Challenges
• Operates in high-speed environment (128 GT/s) and must handle channel-induced disturbances and signal integrity issues

Implementation: Case study 1 - Aligner

• Objective
• Reuse Gen6 formal environment for Gen7 verification

• Reduce setup effort and time-to-verify

• Challenges & Solutions
• Input Data Synchronization

• Gen7: 128-bit width, Gen6 checker: 64-bit

• Introduced gearbox for data width conversion +

 assumptions (data & control inputs)

• Checker Updates

• Tuned auxiliary logic in checker

• Added new assertions at DUT interface for gearbox integrity check and to find basic issues at early stages

• Implementation Details
• Gearbox-based Architecture: Input: 64 → 128 bits (formal env → DUT), Output: 128 → 64 bits (DUT → checker)

• Cover Properties: Ensure valid input scenarios are not omitted

• Relaxed Constraints: Allow bit-error scenarios (inside & outside correctable limits)

Aligner verification strategy

Bug examples
Bug Example 1: Issue: DUT performs unexpected EIEOS correction

• Spec Rule: EIEOS valid if: 1) ≥ 5 consecutive symbols match EIEOS pattern and 2) symbol0 or symbol8 must be a valid EIEOS symbol

• Observed: DUT corrected even though symbol0 & symbol1 were not valid EIEOS symbols

Bug Example 2: Issue: DUT fails to correct first half of an EIOS block
• Spec Rule: EIOS valid if: 1) ≥ 5 consecutive symbols match EIOS pattern and 2) symbol0 or symbol8 must be a valid EIOS symbol

• Observed: Received stream met correctable limits, but DUT didn’t correct

• Role in PCIe
• The deskew block compensates for timing differences between lanes by

realigning the data streams, ensuring all lanes are correctly synchronized
before further processing

• Verification strategy
• The Gen6 formal environment is complex with 9K lines of code

• Attempting to refactor the entire environment through parameterization
would introduce significant risk and extensive engineering effort

• Inserting a gearbox wrapper between the Gen7 DUT and the existing
Gen6 formal environment, preserved the core structure of the
verification environment and avoided invasive rewrites

Case study 2 - Deskew

• Verification challenges
• Differences between intervals of Ordered Sets between Gen6 and Gen7 ​

• Only Gen7 speed uses all 128bits. The gearbox layer had to be bypassed for Gen1 to Gen6 speeds.

• DUT contains alignment FIFOs that doubled in size between generations. Large FIFOs are not formal
friendly structures and can impact proof times. Some tuning/reworking of impacted assertions.

• Assertion to check all lanes are correctly aligned by using special constraint setup
o All lanes receive the same data pattern and just have varying degrees of skew inserted by the formal

environment. This setup is unique to this 1 assertion and controlled by a task.

o Exhaustive nature of formal verification ensures all permutations of skew between the lanes are evaluated

o If the deskew block is working correctly, it will remove the skew on the delayed lanes so that the data
output on each lane matches the other active lanes

generate for (ln_idx=0; ln_idx< LINK_WIDTH; ln_idx=ln_idx+1)

 begin : deskew_lane_gen

 assert_data_aligned_after_deskew_done: assert property (

 data_valid_out|->

data_out[LANE_WIDTH*ln_idx+63:LANE_WIDTH*ln_idx] == data_out[63:0]);

 end // deskew_lane_gen

 endgenerate

Deskew- Example Assertion

Example Input data stream per lane

Start Of Data Stream (SDS) used for aligning

Lane 0 (zero skew): SDS 1 2 3 4 5 6 7 8 9 10

Lane 1 (variable skew): SDS 1 2 3 4 5 6 7 8 9 10

Expected output after deskew process complete

Lane 0 : SDS 1 2 3 4 5 6 7 8 9 10

Lane 1 : SDS 1 2 3 4 5 6 7 8 9 10

Results

25

18

45

2

Bugs count - Aligner

Gen6 Formal

Gen6 Simulation

Gen7 Formal

Gen7 Simulation

4 4

2

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Aligner Deskew

M
an

 M
o

n
th

s

Verification Timeline

Gen6 Gen7

Aligner results:
• Gen7 Aligner

• Formal verification used as primary strategy

• 45 RTL bugs found via formal (minimal simulation)

• Legacy Gen6 assertions caught most bugs

• New assertions at Gen7 output interface found initial basic issues

• Gen6 Aligner

• Started with simulation: 18 bugs found

• Formal added later: 25 more bugs, many noise-related

• No new bugs post formal sign-off

Deskew results:
• No bugs found at Gen7 using formal verification. 19 bugs from Gen6.

• Reused Gen6 assertions passed with 100% functional & code coverage

• No issues found with block in later top-level simulation

• Only minor environment changes needed going from Gen6 to Gen7

General Observations:
• Formal methods excelled at catching corner case and complex bugs

• Sequential depth of proofs same between Gen6 and Gen7

• Similar proof times between Gen6 and Gen7 variants

Summary

• Successfully bridged PCIe Gen6 and Gen7 verification using reused formal checker​s

• Formal achieved high bug detection which reduces debug time during later simulation

• Maintained full coverage levels from formal work, reducing simulation workload​

• Strategy proved scalable, efficient, and sustainable for future designs​

• Strategy can be applied by new verification team members without lengthy ramp up

• Promoted a consistent and maintainable verification environment

	Slide 1: Reduce, Reuse, Reverify: An efficient approach to transition formal verification environments from PCIe Gen6 to Gen7 ​
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Solution - A gearbox method
	Slide 6
	Slide 7
	Slide 8: Bug examples
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

