(2025

DESIGN AND VERIEICATION ™

DVLDOIN

CONFERENCE AND EXHIBITION

MUNICH, GERMANY
OCTOBER 14-15, 2025

Reduce, Reuse, Reverify: An efficient approach to transition
formal verification environments from PCle Gen6 to Gen7

Zahid Fazal, Design Engineer-ll

Moola Jeevan Chaitanya Goud, Design Engineer-|
Hamish Hendry, Design Engineering Group Director
Sakthivel Ramaiah, Design Engineering Architect

cadence

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Introduction

Background
* PCI Express (PCle) is a high-speed serial interface standard used in modern computing

systems.
* Each generation of PCle doubles the data rate: Gen6: 64 GT/s & Gen7: 128 GT/s

Verification Strategy
* Formal Verification applied to numerous blocks within previous Gen5 and Gen6 controllers

* Formal proven to be highly effective at both bug detection and coverage closure
* However, formal environments are costly to build and tune for each new generation

Opportunity

e Efficient reuse of PCle Gen6 formal environments for Gen7 critical to:

e Reduce environment development time

* Lower verification cost
* Accelerate bug detection

(2025

DESIGN AND VERIEICATION ™

Problem Statement

Core Problems

* Genb6 formal environments are not directly compatible with Gen7 designs due to data rate
mismatch (64 GT/s vs. 128 GT/s).

* Datapath widths are different between generations

e Complex assertions, constraints and auxiliary code structured to assume a specific number of
bytes per clock cycle. Not a simple change in parameter value to migrate most environments.

Consequences of Direct Reuse
* False failures in formal checks and invalid property triggering
Verification Challenges

e Rebuilding Gen7 formal environments from scratch is:
* Time-consuming , Resource-intensive, Risk-prone
* Aggressive test chip milestone date
* Changes in verification team who are not familiar with existing environments

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Solution - A gearbox method

* Use the gearbox technique to reuse the Gen6 checker, which operates on a fast clock. The DUT is
a Gen7 design that runs on a slow clock. Note that the data width has doubled in Gen7.

sowene [[L[L[L[1[I L[1 __

data_dutf127:0] 128 X 128b X 128b XEEEPE) 128b XIEEEH R IETEE

fast_clk||||||||||||||||||||||||||||

data_checker[63:0] 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b X 64b

Why Gearbox? Gearbox Advantages
Parameterization = High Risk - Acts as translation layer between Gen7

- 1000's of lines of tightly coupled Gen6 code DUT & Genb6 formal environment.

- Complex FSM aux code, assertions - Preserves existing verification logic

- Refactoring - requires heavy revalidation - Minimal code changes, faster onboarding
Time-critical: Gen7 test chip near code freeze - Maintains assertion quality & coverage

Outcome - Faster turnaround under stringent timelines & No compromise on verification quality

(2025

DESIGN AND VERIEICATION ™

Implementation: Case study 1 - Aligner

e Role in PCle PCS

Positioned at the frontline of the Physical Layer
Receives unaligned 128-bit data from PMA
Ensures block boundary recovery and protocol compliance before

passing data upstream

* Key Functionalities

Data Alignment & Boundary Recovery
* Detect EIEOS markers as per PCle Gen7 spec
* Realign 128-bit data to byte and block boundaries

7 EIEOS bit pattern 27

l Unaligned input data

Aligner DUT

Change in
alignment EIEQS

Unahgned)

03 block not
detected at
interval

Lcu:'.kad

.ﬁdlgned

U

* Maintain dynamic alignment FSM for lock recovery

. . Block aligned output data
* Skip Detection " J i

* Identify SKP ordered sets for clock compensation EIEOS block ~ Datablock ~ SKPOS — Data block
* Error Correction fixed fixed variable fixed
length length length length

* Detect anomalies and apply spec-defined correction schemes

* Design Challenges

* OQOperates in high-speed environment (128 GT/s) and must handle channel-induced disturbances and signal integrity issues

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Aligner verification strategy

* Objective

slow_clk »
* Reuse Gen6 formal environment for Gen7 verification [slow_cik]
: g i GIantl)t e Gen7 Aligner 128h jr—— GOUtIJt;UT
* Reduce setup effort and time-to-verify — > o — —amb

A A

* Challenges & Solutions
* Input Data Synchronization
* Gen7: 128-bit width, Gen6 checker: 64-bit [fast_ck | ?
* Introduced gearbox for data width conversion + ["5 |
assumptions (data & control inputs)
P Genb Checker 64b

* Checker Updates

* Tuned auxiliary logic in checker

[
-

* Added new assertions at DUT interface for gearbox integrity check and to find basic issues at early stages

* Implementation Details
* Gearbox-based Architecture: Input: 64 = 128 bits (formal env - DUT), Output: 128 = 64 bits (DUT = checker)
* Cover Properties: Ensure valid input scenarios are not omitted
* Relaxed Constraints: Allow bit-error scenarios (inside & outside correctable limits)

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Bug examples

Bug Example 1: Issue: DUT performs unexpected EIEOS correction
* Spec Rule: EIEOS valid if: 1) > 5 consecutive symbols match EIEOS pattern and 2) symbol0 or symbol8 must be a valid EIEOS symbol
* Observed: DUT corrected even though symbol0 & symboll were not valid EIEOS symbols

o | | : | + |
data vid_in
realigned_data_in ffff_ffif_fiff_ —c_nmﬂ_{mm_mm_ncﬁ-"WT /fﬁ/ﬁ//ﬁH 7%
realigned_corrected_data_out WW//C{//) fiff_ffff_fff_fiff|0000_0000_0000
data_vid_out =

Bug Example 2: Issue: DUT fails to correct first half of an EIOS block
* Spec Rule: EIOS valid if: 1) 2 5 consecutive symbols match EIOS pattern and 2) symbol0 or symbol8 must be a valid EIOS symbol
* Observed: Received stream met correctable limits, but DUT didn’t correct

clic 4 | } | } |
data_vid_in . Mot Corrrected —==—ee_
realigned_data_in f002_fOOf_300f f00f [200f f0Of 030 fOOf %7 R
—
realigned_cormrected data out % fOOf_fOOf_f0Of_fOOf [200f fOOf fO30 fOOf
data_vid_out

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Case study 2 - Deskew

* Rolein PCle

* The deskew block compensates for timing differences between lanes by
realigning the data streams, ensuring all lanes are correctly synchronized [os}—

before further processing L
Speed
* Verification strategy aan Do) ot [255
e The Gen6 formal environment is complex with 9K lines of code o Ly 1
* Attempting to refactor the entire environment through parameterization [spee |
would introduce significant risk and extensive engineering effort (] 0 '
* Inserting a gearbox wrapper between the Gen7 DUT and the existing "= L[,
Gen6 formal environment, preserved the core structure of the Gt Do 0
oo -dala64b
verification environment and avoided invasive rewrites .

e Verification challenges
* Differences between intervals of Ordered Sets between Gen6 and Gen?7

* Only Gen7 speed uses all 128bits. The gearbox layer had to be bypassed for Genl to Gen6 speeds.

* DUT contains alignment FIFOs that doubled in size between generations. Large FIFOs are not formal
friendly structures and can impact proof times. Some tuning/reworking of impacted assertions.

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Deskew- Example Assertion

* Assertion to check all lanes are correctly aligned by using special constraint setup

o All lanes receive the same data pattern and just have varying degrees of skew inserted by the formal
environment. This setup is unigue to this 1 assertion and controlled by a task.

o Exhaustive nature of formal verification ensures all permutations of skew between the lanes are evaluated
o If the deskew block is working correctly, it will remove the skew on the delayed lanes so that the data
output on each lane matches the other active lanes

Example Input data stream per lane

generate for (In_idx=0; In_idx< LINK_WIDTH; In_idx=In_idx+1) Start Of Data Stream (SDS) used for aligning
begin : deskew_lane_gen Lane O (zero skew): SDS12345678910
assert_data_aligned_after_deskew _done: assert property (Lane 1 (variable skew): SDS12345678910

data_valid_out[->

data_out[LANE_WIDTH*In_idx+63:LANE_WIDTH*In_idx] == data_out[63:0]); Expected output after deskew process complete

Lane0: SDS12345678910
Llane1l: SDS12345678910

end // deskew_lane _gen

endgenerate

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Results

e Gen7 Aligner

Bugs count - Aligner e Formal verification used as primary strategy
e 45 RTL bugs found via formal (minimal simulation)
= Gen6 Formal e Legacy Gen6 assertions caught most bugs
= Gené Simulation * New assertions at Gen7 output interface found initial basic issues
Gen7 Formal e Gené6 Aligner

45
e Started with simulation: 18 bugs found

e Formal added later: 25 more bugs, many noise-related
* No new bugs post formal sign-off

Deskew results:

Gen7 Simulation

verification Timeline * No bugs found at Gen7 using formal verification. 19 bugs from Gené.
4'2 ! ! e Reused Genb assertions passed with 100% functional & code coverage
P 3'2 * No issues found with block in later top-level simulation
é 2.2 > e Only minor environment changes needed going from Gen6 to Gen7
.) General Observations:
! e Formal methods excelled at catching corner case and complex bugs

o
(6]

e Sequential depth of proofs same between Gen6 and Gen7
e Similar proof times between Gen6 and Gen7 variants

Aligner Deskew

B Gen6 Gen7

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Summary

Successfully bridged PCle Gen6 and Gen7 verification using reused formal checkers

Formal achieved high bug detection which reduces debug time during later simulation

Maintained full coverage levels from formal work, reducing simulation workload

Strategy proved scalable, efficient, and sustainable for future designs

Strategy can be applied by new verification team members without lengthy ramp up

Promoted a consistent and maintainable verification environment

(2025

DESIGN AND VERIEICATION ™

Thank You

Uny Questions?

	Slide 1: Reduce, Reuse, Reverify: An efficient approach to transition formal verification environments from PCIe Gen6 to Gen7 ​
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Solution - A gearbox method
	Slide 6
	Slide 7
	Slide 8: Bug examples
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

