(2022

DESIGN AND VERIFICATION ™

DVGCON

CONFERENCE AND EXHIBITION

SAN JOSE, CA, USA
FEBRUARY 28 - MARCH 3, 2022

Raising the level of Formal Signoff
with End-to-End Checking Methodology

Ping Yeung, Arun Khurana, Dhruv Gupta,

Ashutosh Prasad, Achin Mittal
04,% Oski Technology aCCEIlel‘a

TECHNOLOGY San Jose, CA, Gurugram India SYSTEMS |N|T| g
N

Agenda

* Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

* Abstraction Techniques and Modeling

* Testcases

e Parameterized Multi-cast Crossbar Design
e GPU Level 2 Cache Request Coalescer (LRC) unit
* NOC Configurable Cache Controller

Formal Verification Usage Levels

Connectivity
Register checks
Clock gating
Sequential LEC

Level 3 ((

Shift Left; Formal Bug Hunting

RTL Assertions
Arbiter

FIFO
Handshake
Bus Protocol

Exhaustive: Formal Sign-Off

Level 5

ystem Arch.
Verification

Level4|i

Block
Sign-Off

System Deadlock
Cache Coherence
Sys-Level Security

Auto Checks
X-propagation
Unreachability

OVL

ABV Formal

Formal Apps

Level 1

>
Auto Formal

White-box approach

Load/Store Unit
Warp Sequencer
Cache Controller

Multi-Lane Aligner

MAC Rx Block

Black-box approach (ideally)

Block-Level Formal Signoff

Different from traditional Assertion-based Verification
* Black-box approach; use end-to-end checkers; does not depend on RTL
* Divide-and-conquer with multiple formal testbenches

Level 4

H

Block
Sign-Off

Level 4

Block
Sign-Off

Block-Level Formal Signoff @

Different from traditional Assertion-based Verification

* Black-box approach; use end-to-end checkers; does not depend on RTL
* Divide-and-conquer with multiple formal testbenches

Early deployment

* |dentify incomplete or ambiguous specifications early in the design cycle,

* Provide clear value to the project team because they map directly to the functional specification
* Find bugs and verify the block while the designer is coding the RTL

Level 4

Block
Sign-Off

Block-Level Formal Signoff @

Different from traditional Assertion-based Verification

* Black-box approach; use end-to-end checkers; does not depend on RTL
* Divide-and-conquer with multiple formal testbenches

Early deployment

* |dentify incomplete or ambiguous specifications early in the design cycle,

* Provide clear value to the project team because they map directly to the functional specification
* Find bugs and verify the block while the designer is coding the RTL

Exhaustiveness
* Replace simulation entirely and do a formal signoff of the block,
* Find deep or unaware corner case issues

Reusability
* Use to confirm RTL fixes; ensure all scenarios are covered
* Reuse the formal testbench to verify new RTL code

Agenda

* Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

* Abstraction Techniques and Modeling

* Testcases

e Parameterized Multi-cast Crossbar Design
e GPU Level 2 Cache Request Coalescer (LRC) unit
* NOC Configurable Cache Controller

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,

Management : :
& Schedule & milestones engineer resources vendor resources

Management
* Need a team of formal experts and engineers
* Formal experts with years of experience required for formal planning
* Formal engineers required for formal testbench implementation
e Careful partnering of formal engineers with design team members
* Need compute resources and vendor expertise
e Server farm environment for formal coverage and final signoff
* Vendor expertise to address some difficult properties

End-to-End Checking Methodology

Formal expertise Block
Management Schedule & milestones e |dentify blocks for E2E formal
* Evaluate to determine effort
, Function
Hod: Ieleminity snel el Describe E2E functionality
. b S B * Prioritize them based on importance/risk
Function Describe and Prioritize Complexity
_ Decompose, divide-and-conquer
Complexity Decompose and Map .

Map them to one or more formal TBs

End-to-End Checking Methodology

Formal expertise Allocate formal

Management : :

& Schedule & milestones engineer resources
Block |dentify and Evaluate = Capture Interfaces
Function Describe and Prioritize End-to-End Checkers

Complexity Decompose and Map Abstraction Techniques

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,
Management : :

Schedule & milestones engineer resources vendor resources
Block Identify and Evaluate Capture Interfaces Validate Constraints
Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

Agenda

* Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

* Abstraction Techniques and Modeling

* Testcases

e Parameterized Multi-cast Crossbar Design
e GPU Level 2 Cache Request Coalescer (LRC) unit
* NOC Configurable Cache Controller

End-to-End Checkers

Developing formal-friendly reference model could be as big an effort as

writing RTL

A A O

v

RTL Block

Input Handshake

|
Control Data
path path
checks checks
t

Output Handshake

End-to-End Checker

Interface Handshake

Control Models

Datapath Models

Abstraction Models

End-to-End Checkers

Developing formal-friendly reference model could be as big an effort as

writing RTL

A A O

v

RTL Block

Input Handshake

|
Control Data
path path
checks checks
t

Output Handshake

End-to-End Checker

Interface Handshake

Control Models

Datapath Models

Abstraction Models

Abstraction Techniques

Abstraction Technique |Design Complexity Formal Efficiency

Multiple runs with different Reduce COI, reduce state

cases reducing design
. space per run/case
complexity per run/case

: Eliminate logic driving cut- Reduce COI, state space;
- Black . " -
el [HRE points/inside blackbox controlled with constraints

Case splitting

© Accellera Systems Initiative 16

Abstraction Techniques

Abstraction Technique |Design Complexity Formal Efficiency

Multiple runs with different
cases reducing design
complexity per run/case

: Eliminate logic driving cut-
Sl Tl <L points/inside blackbox

Reset abstraction n.a.

Counter abstraction n.a.

Case splitting

© Accellera Systems Initiative

Reduce COI, reduce state
space per run/case

Increase flexibility but

controlled with constraints

Reduce access depth

Reduce the length of
counting

17

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Symmetric data

elements [7]

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

© Accellera Systems Initiative

Reduce COIl and state space
with symmetry

18

IS

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Symmetric data Reduce COIl and state space

with symmetry

elements [7]

RTL model Abstraction model

element_type [SIZE-1:0] element; |element_type abs element;

element [addr] = wr_data; if (addr == sym_addr) abs_element = wr_data;
rd_data = element [addr]; if (addr == sym_addr) rd_data = abs_element;

Sstable (sym_addr)

19

Abstraction Modeling 2

Abstraction Model Design Complexity Formal Efficiency

VI S E |l B Represent one location instead Reduce COl and state space
[7] of the full size of the memory with symmetry

RTL memory:
abstraction memory:
assume property:
abstraction write:
abstraction read:

reg [WIDTH-1:0] mem [DEPTH-1:0];

reg [WIDTH-1:0] mem;

(sym_addr < DEPTH) ##1 Sstable(sym_addr)

if (wr && (wr_addr == sym_addr)) mem <= wr_data;
if (rd && (rd_addr == sym_addr)) rd_data = mem;

© Accellera Systems Initiative 20

Abstraction Modeling 3

Abstraction Model Design Complexity Formal Efficiency
Eliminate logic before cut-
FIFO [7] i W Reduce the depth of the FIFO

wire [LOG_DEPTH-1:0] sym_depth;
assume property: (sym_depth > 1 && sym_depth < DEPTH) ##1 Sstable(sym_depth)
abstraction model: if (wr_ptr ==sym_depth) wr_ptr <=0;

else wr_ptr <= wr_ptr + 1;

© Accellera Systems Initiative 21

Abstraction Modeling 4

Abstraction Model Design Complexity Formal Efficiency

DETERT 1L [[(= Eliminate all storage elements;
W] [rT e i A R add Wolper FSMs

Reduce COIl with pattern

The rules for generating and verifying the Wolper sequence are:
1. If the first 1 is seen, next one should be 1

wolper_1st 1 seen_next_1: (first_ one && !second_one && input_valid) |-> (colored_input == 1'b1)
2. Iftwo 1’s are seen, only O’s should be seen

wolper_2nd_1 seen_forever_0: (second_one && input_valid) |-> (colored_input == 1'b0)

Abstraction Modeling Summary

Abstraction Modeling | Design Complexity Formal Efficiency

Eliminate multiple dimensional data

. . :) . Reduce COIl and state space with
Sl EECETEREEGENSIVAR elements; add single dimension abstraction P

symmetr
model Y Y
. Represent one location instead of the full Reduce COIl and state space with
Memory abstraction [7] .
size of the memory symmetry

Eliminate logic before cut-points; add

FIFO [7 :
O [7] abstraction model

Reduce the depth of the FIFO

Data independence Eliminate all storage elements; add Wolper

(Wolper Coloring) [6] ESMs Reduce COI with pattern

Represent one tag instead of the complete

linked list feaies Col

Tagging [9]

© Accellera Systems Initiative 23

Agenda

* Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

* Abstraction Techniques and Modeling

* Testcases

e Parameterized Multi-cast Crossbar Design
e GPU Level 2 Cache Request Coalescer (LRC) unit
* NOC Configurable Cache Controller

Parameterized Multi-cast Crossbar Design

. Co C1 C6 C
* 8x8 Crossbar design - - -

e each client can send request to 1+ targets

* Each target has an arbiter to decide which client 0 | | client_1 client_6 | | client_7
request gets forwarded based on priorities

* Abstraction Deployed

* symbolic variables used to select a client/target
and implemented all of the checkers for the

target_0 target_1 target_6 target_7
A 4 \ 4

v \ 4

8x8 Multicast Crossbar

symbolic client and target pair.

* Formal explore all possible values for the
symbolic variables

© Accellera Systems Initiative 26

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

* Control path end-to-end checkers:
* An arbitration checker (a combination of two checkers) for the arbitration scheme
* A consistency checker to ensure no spurious grant is given to a client

* Performance checkers to ensure operations are performed in each cycle when the
conditions are met.

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

* Control path end-to-end checkers:
* An arbitration checker (a combination of two checkers) for the arbitration scheme
* A consistency checker to ensure no spurious grant is given to a client

* Performance checkers to ensure operations are performed in each cycle when the
conditions are met.

e Data path end-to-end checkers:

* Data integrity checkers to ensure correct transfer
* from read data input port to buffer
* from buffer to store output port.
e data is not corrupted, duplicated, reordered, or dropped.

* Wolper coloring technique: doesn’t require data storage

Parameterized Multi-cast Crossbar Design

Formal expert (6+ yr) Formal engineer (2+ yr)
Management (20% time) Schedule: 1.5 months 8-core, 48GB memory server
.. I f ; . :
Divide and conquer: Cafptur-e ntertaces Validate Constraints:
Block Client inputs/outputs . L
n.a. . Simulation integrated
Target inputs/outputs
Prioritize: End-to-End Checkers:
Function Data correctness Data integrity (Wolper) RTL Bugs:
Arbitration workload Target arbitration 73 known bugs found
Sequence of data flow Forward progress checkers
Abstraction Techniques:
. Formal Coverage:
: Decompose: Use symmetric elements; .
Complexity)) . Line: 100%
n.a. symbolic variable on client

. Condition: 100%
and target pair

Ipshita Tripathi, Ankit Saxdna, et al., "Process & Proof for Formal Signoff - Live Case Study," DVCon 2016

© Accellera Systems Initiative 29

GPU Level 2 Cache Request Coalescer (LRC) unit

* Risk of top-level deadlock bugs

* Top-level simulation coverage is insufficient

* Blocks with embedded stall conditions introduce

dependencies

N\

/

| Check availability of resources for each VC

* Developed a novel approach for deadlock detection

* Proved the absence of deadlock across multiple virtual
channels in the L2 Request Coalescer

ARB

Filter

REQ

* Repeatable method to detect deadlocks in complex
designs

DESIGN AND VEg.Q;%—.LNw Saurabh Chaurdia, Oski Technology

D v Arun Khurana, Oski Technology
Naveen Kumar, Oski Technology

CONFERENCE AND EXHIBITION Aditya Chaurasiya, Oski Technology

Yogesh Mahajan, NVIDIA NVIDIA

VIRTUAL | MARGCH 1-4, 2021 Prasenjit Biswas, NVIDIA

GPU Level 2 Cache Request Coalescer (LRC) unit

Management

Block

Function

Complexity

Formal expert (9+ yr)
(20% time)

Divide and conquer:
Submodules: Req, Rsp

Prioritize: All
IP block, all checks are
important

Decompose:

ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)

Partition VC path to reduce
latency

© Accellera Systems Initiative

36

GPU Level 2 Cache Request Coalescer (LRC) unit

Formal expert (9+ yr) Formal engineer (1+ yr)
M .
anagement (20% time) Schedule: 6.5 months
Sviidle ane cana e Capture Interfaces:
Block submodules: Req. Rs Xbar Interface
- 1eq, 1sp L2 interface
End-to-End Checkers:
Prioritize: All Request coalescing
Function IP block, all checks are Data integrity
important Response replay
Forward progress
Decompose: Abstraction Techniques:
ILC (submodule) blackbox Counter abstraction
Complexit Design Shrinking (FIFO and Wolper’s method for data
P Y CAM) consistency

Partition VC path to reduce Symbolic address/CAM ID
latency modeling

& ALLCIITIA Joy>SLCIlID THiitiallve

GPU Level 2 Cache Request Coalescer (LRC) unit

Management

Block

Function

Complexity

Formal expert (9+ yr)
(20% time)

Divide and conquer:
Submodules: Req, Rsp

Prioritize: All
IP block, all checks are
important

Decompose:

ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)

Partition VC path to reduce
latency

Formal engineer (1+ yr)
Schedule: 6.5 months

Capture Interfaces:
Xbar Interface
L2 interface

End-to-End Checkers:
Request coalescing
Data integrity
Response replay
Forward progress

Abstraction Techniques:
Counter abstraction
Wolper’s method for data
consistency

Symbolic address/CAM ID
modeling

& ALLCIITIA Joy>SLCIlID THiitiallve

16-core,
256GB memory server

Validate Constraints:
Simulation integrated;
cross-proved

RTL Bugs:
57 bugs found
7 corner-case issues

Formal Coverage:
Line: 100%
Condition: 100%

NOC Configurable Cache Controller

* Simulation-only unable to deliver
required level of confidence for IP
products

* Too many configurations to test
e Cannot afford failures of untested scenarios

that render chip unusable
* Deployed formal sign-off methodology

e 70+ bugs found

* >40% of bugs considered simulation-
resistant

* Confident that the last bug was found

Datapipe

command Tagpipe
Tag
mem datapi
fill state atepipe
—— operation
A A A
A 4 A 4 A 4
evict .
Bank data evict
N F» controllel Memory > data
fill controller (rjdrsp N >
ata
data " Rior(-jer rdrsp
OglC
: evict _ daEa
}» Bank data : .
’ controller Memory >
. controller |rdrsp
write data
data

NOC Configurable Cache Controller

Formal expert (10+ yr, 25% time) Sr. Formal engineer (50% time) 16-core, 64GB server

BIEGEMET | oo e, 58 mamine 2x Formal engineer (2+ yr) 16-core, 512GB server

Divide and conquer:
Block Submodules: arbiters, cacheline
controller, DDR controller

Prioritize: All
LRU arbiter (module)
Cacheline (SV bind)

PRI Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)
Decompose:

Complexity Tag and Data flow paths were

decomposed

NOC Configurable Cache Controller

implementation

Management

Block

Function

Complexity

Formal expert (10+ yr, 25% time)
Schedule: 5-6 months

Divide and conquer:
Submodules: arbiters, cacheline
controller, DDR controller

Prioritize: All

LRU arbiter (module)
Cacheline (SV bind)

Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)

Decompose:
Tag and Data flow paths were
decomposed

Sr. Formal engineer (50% time)
2x Formal engineer (2+ yr)

Capture Interfaces:

Cmd and Register interfaces
Data SRAM interface

DDR RAM interface

Tag <> data interface

End-to-End Checkers:

Tag flow:

- Tag state, Eviction address/state
- Replacement policy

Data flow:

- Write/read data integrity

- Eviction data

Abstraction Techniques:

Reset abstractions

Cut-points

Symbolic sets for symmetric data in tag
and data memories

Data coloring for data consistency

16-core, 64GB server
16-core, 512GB server

Validate Constraints:
Simulation integrated; cross-
proved

Total 496 properties
76% proven

24% bounded

76 bugs

29 bugs are simulation
resistant

Formal Coverage:
Functional coverage
Assertion precondition

coverage
Checkers reach required proof
depth 41

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,
Management : :
Schedule & milestones " engineer resources vendor resources
Block |dentify and Evaluate ﬁ>Capture Interfaces ﬁ>VaIidate Constraints
Function Describe and Prioritize ﬁEnd-to—End Checkers Conclusiveness >
inconclusives

Complexity Decompose and Map ®Abstraction Technique£>Forma Coverage

&S s

Summary

* Block-level Formal Signoff with End-to-End Checking Methodology
* End-to-End Checkers
* Abstraction Techniques and Modeling
 Comprehensive for block-level formal signoff

* Major benefits
* Reduce time to First Bug: Shift-Left “Avoidable Bugs”
* Reduce time to Last Bug: Eliminate “Inevitable Bugs”

* Acknowledgement
* The support of the whole Oski Team in Gurugram, India.

