BER C77))
VI

CONFERENCE AND EXHIBITION

Raising the level of Formal Signoff
with End-to-End Checking Methodology

Ping Yeung, Arun Khurana, Dhruv Gupta,
Ashutosh Prasad, Achin Mittal

m Nvidia (Oski team), Santa Clara, CA, Gurugram India

Agenda

« Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

» Abstraction Technigues and Modeling

e Testcases

« Parameterized Multi-cast Crossbar Design
 GPU Level 2 Cache Request Coalescer (LRC) unit
« NOC Configurable Cache Controller

Formal Verification Usage Levels

Shift Left; Formal Bug Hunting Exhaustive: Formal Sign-Off
RTL Assertions Level 5
Arbit
e ,5 \System Arch.
. Handshake VEI’I:ﬁCGt/OI?
Connectivity Bus Protocol Level 4
Register checks System Deadlock
Clock ga'Fing > SBI,E,)C(;(Cache Coherence
Sequential LEC Level 3 ((ign-Off Sys-Level Security
Auto Check§ SVA Load/Store Unit
X-propagation i~ ABV Formal Warp Sequencer
Unreachability Level 2 Cache Controller
Multi-Lane Aligner
Formal Apps MAC Rx Block
Level 1

dCt

SYSTEMS INITIATIVE

Auto Formal
/* ODE White-box approach Black-box approach (ideally)

Level 4

Block-Level Formal Signoff

Different from traditional Assertion-based Verification
» Black-box approach; use end-to-end checkers; does not depend on RTL
 Divide-and-conquer with multiple formal testbenches

Block
Sign-Off

SYSTEMS INITIATIVE

Level 4

Block-Level Formal Signoft

Different from traditional Assertion-based Verification
» Black-box approach; use end-to-end checkers; does not depend on RTL
 Divide-and-conquer with multiple formal testbenches

Block
Sign-Off

Early deployment
* Identify incomplete or ambiguous specifications early in the design cycle,

* Provide clear value to the project team because they map directly to the functional
specification

* Find bugs and verify the block while the designer is coding the RTL

SYSTEMS INITIATIVE

Level 4

Block-Level Formal Signoft

Different from traditional Assertion-based Verification
» Black-box approach; use end-to-end checkers; does not depend on RTL
 Divide-and-conquer with multiple formal testbenches

Block
Sign-Off

Early deployment

« Identify incomplete or ambiguous specifications early in the design cycle,

* Provide clear value to the project team because they map directly to the functional specification
» Find bugs and verify the block while the designer is coding the RTL

Exhaustiveness
* Replace simulation entirely and do a formal signoff of the block,
» Find deep or unaware corner case issues

Reusability
* Use to confirm RTL fixes: ensure all scenarios are covered
* Reuse the formal testbench to verify new RTL code

SYSTEMS INITIATIVE

Agenda

« Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

» Abstraction Technigues and Modeling

e Testcases

« Parameterized Multi-cast Crossbar Design
 GPU Level 2 Cache Request Coalescer (LRC) unit
« NOC Configurable Cache Controller

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,

Management : :
& Schedule & milestones engineer resources vendor resources

Management
* Need a team of formal experts and engineers
* Formal experts with years of experience required for formal planning
* Formal engineers required for formal testbench implementation
* Careful partnering of formal engineers with design team members
* Need compute resources and vendor expertise
* Server farm environment for formal coverage and final signoff
* Vendor expertise to address some difficult properties

SYSTEMS INITIATIVE

End-to-End Checking Methodology

Formal expertise Block

Management Schedule & milestones e |dentify blocks for E2E formal

* Evaluate to determine effort

, Function
2l Ielemitity el el * Describe E2E functionality
. b S B * Prioritize them based on importance/risk
Function Describe and Prioritize Complexity
. Decompose, divide-and-conquer

Complexity Decompose and Map .

Map them to one or more formal TBs

SYSTEMS INITIATIVE

End-to-End Checking Methodology

Formal expertise Allocate formal

Management Schedule & milestones engineer resources
Block |dentify and Evaluate = Capture Interfaces
Function Describe and Prioritize End-to-End Checkers
Complexity Decompose and Map Abstraction Techniques

SYSTEMS INITIATIVE

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,
Management : :

Schedule & milestones engineer resources vendor resources
Block Identify and Evaluate Capture Interfaces Validate Constraints
Function Describe and Prioritize End-to-End Checkers Conclusiveness
Complexity Decompose and Map Abstraction Techniques Formal Coverage

SYSTEMS INITIATIVE

Agenda

« Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

« Abstraction Techniques and Modeling

e Testcases

« Parameterized Multi-cast Crossbar Design
 GPU Level 2 Cache Request Coalescer (LRC) unit
« NOC Configurable Cache Controller

End-to-End Checkers

Developing formal-friendly reference model could be as big an
effort as writing RTL

End-to-End Checker

Input Handshake

Interface Handshake

Control Data
path path Control Models
checks checks

Datapath Models

Abstraction Models

Output Handshake

SYSTEMS INITIATIVE

End-to-End Checkers

Developing formal-friendly reference model could be as big an
effort as writing RTL

End-to-End Checker

Input Handshake

Interface Handshake

Control Data
path path Control Models
checks checks

Datapath Models

Abstraction Models

Output Handshake

SYSTEMS INITIATIVE

Abstraction Technigques

Abstraction Technique |Desigh Complexity Formal Efficiency

Multiple runs with different
cases reducing design
complexity per run/case

Cut-point/ Black box Eliminate logic driving cut- Reduce COl, state space;
P points/inside blackbox controlled with constraints

Reduce COI, reduce state
space per run/case

Case splitting

SYSTEMS INITIATIVE

Abstraction Technigques

Abstraction Technique |Desigh Complexity Formal Efficiency

Multiple runs with different
cases reducing design
complexity per run/case

Cut-point/ Black box Eliminate logic driving cut- Increase flexibility but
P points/inside blackbox controlled with constraints
Reset abstraction n.a. Reduce access depth

. Reduce the length of
Counter abstraction n.a. . 5
counting

Reduce COI, reduce state
space per run/case

Case splitting

SYSTEMS INITIATIVE

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Reduce COIl and state space
with symmetry

Symmetric data

elements [7]

SYSTEMS INITIATIVE

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Symmetric data Reduce COIl and state space

with symmetry

elements [7]

RTL model Abstraction model

element_type [SIZE-1:0] element; |element_type abs element;

element [addr] = wr_data; if (addr == sym_addr) abs_element = wr_data;
rd_data = element [addr]; if (addr == sym_addr) rd_data = abs_element;

Sstable (sym_addr)

SYSTEMS INITIATIVE

Abstraction Modeling 2

Abstraction Model Design Complexity Formal Efficiency

VI S E |l B Represent one location instead Reduce COl and state space

[7] of the full size of the memory with symmetry
RTL memory: reg [WIDTH-1:0] mem [DEPTH-1:0];
abstraction memory: reg [WIDTH-1:0] mem;
assume property: (sym_addr < DEPTH) ##1 Sstable(sym_addr)
abstraction write: if (wr && (wr_addr == sym_addr)) mem <= wr_data;
abstraction read: if (rd && (rd_addr == sym_addr)) rd_data = mem;

SYSTEMS INITIATIVE

Abstraction Modeling 3

Abstraction Model Design Complexity Formal Efficiency
Eliminate logic before cut-
FIFO [7] i O — Reduce the depth of the FIFO

wire [LOG_DEPTH-1:0] sym_depth;
assume property: (sym_depth > 1 && sym_depth < DEPTH) ##1 Sstable(sym_depth)
abstraction model: if (wr_ptr == sym_depth) wr_ptr <= 0;

else wr_ptr <=wr_ptr + 1;

SYSTEMS INITIATIVE

Abstraction Modeling 4

Abstraction Model Design Complexity Formal Efficiency

DETERT (o[e[S (=88 Eliminate all storage elements;
W] el) e[-4 R add Wolper FSMs

Reduce COIl with pattern

The rules for generating and verifying the Wolper sequence are:
1. If the first 1 is seen, next one should be 1
wolper_1st 1 seen_next_1: (first_ one && !second_one && input_valid) |-> (colored_input == 1'b1)

2. Iftwo 1’s are seen, only O’s should be seen

wolper_2nd_1 seen_forever_0: (second _one && input_valid) |-> (colored_input == 1'b0)

Geltrs) '
accellera D

SYSTEMS INITIATIVE

Abstraction Modeling Summary

Abstraction Modeling |Design Complexity Formal Efficiency

Eliminate multiple dimensional data

. : .) . Reduce COI and state space with
Sl EECETEREEGENSIVAR elements; add single dimension abstraction P

symmetry

model
. Represent one location instead of the full Reduce COIl and state space with
Memory abstraction [7])
size of the memory symmetry

Eliminate logic before cut-points; add

FIFO [7] abstraction model

Reduce the depth of the FIFO

Data independence Eliminate all storage elements; add Wolper

(Wolper Coloring) [6] ESMs Reduce COI with pattern

Represent one tag instead of the complete

Tl et fEehER gl

Tagging [9]

SYSTEMS INITIATIVE

Agenda

« Formal Verification Usage Levels

* End-to-End Checking Methodology

* End-to-End Checkers

» Abstraction Technigues and Modeling

e Testcases

« Parameterized Multi-cast Crossbar Design
 GPU Level 2 Cache Request Coalescer (LRC) unit
« NOC Configurable Cache Controller

Parameterized Multi-cast Crossbar Design

» 8x8 Crossbar design

« each client can send request to 1+ targets

« Each target has an arbiter to decide which client_0 | | client_1 client_6 | | client_7
request gets forwarded based on priorities

 Abstraction Deployed

« symbolic variables used to select a
client/target and implemented all of the
checkers for the symbolic client and target

target_0 target_1 target_6 target_7

* Formal explore all possible values for the
Symbolic variables 8x8 Multicast Crossbar

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

 Control path end-to-end checkers:
« An arbitration checker (a combination of two checkers) for the arbitration scheme
A consistency checker to ensure no spurious grant is given to a client

- Performance checkers to ensure operations are performed in each cycle when
the conditions are met.

SYSTEMS INITIATIVE

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

 Control path end-to-end checkers:
« An arbitration checker (a combination of two checkers) for the arbitration scheme
A consistency checker to ensure no spurious grant is given to a client

- Performance checkers to ensure operations are performed in each cycle when
the conditions are met.

 Data path end-to-end checkers:

« Data integrity checkers to ensure correct transfer
« from read data input port to buffer
 from buffer to store output port.
 data is not corrupted, duplicated, reordered, or dropped.

« Wolper coloring technique: doesn’t require data storage

SYSTEMS INITIATIVE

Parameterized Multi-cast Crossbar Design

Formal expert (6+ yr) Formal engineer (2+ yr)
. = ’ B
Management (20% time) Schedule: 1.5 months 8-core, 48GB memory server
.. I f ; : :
Divide and conquer: Canturle ntertaces Validate Constraints:
Block Client inputs/outputs . L
n.a. . Simulation integrated
Target inputs/outputs
Prioritize: End-to-End Checkers:
Function Data correctness Data integrity (Wolper) RTL Bugs:
Arbitration workload Target arbitration 73 known bugs found
Sequence of data flow Forward progress checkers
Abstraction Techniques:
. Formal Coverage:
: Decompose: Use symmetric elements; .
Complexity) . . Line: 100%
n.a. symbolic variable on client

: Condition: 100%
and target pair

Ipshita Tripathi, Ankit Saxdna, et al., "Process & Proof for Formal Signoff - Live Case Study,"” DVVCon 2016

=5

SYSTEMS INITIATIVE

GPU Level 2 Cache Request Coalescer (LRC)
unit
 Risk of top-level deadlock bugs

» Top-level simulation coverage is insufficient

* Blocks with embedded stall conditions introduce
dependencies

\ /
[) DeVeIQDEd a novel apprOach for deadIOCk | Check availability of resources for each VC |
detection
* Proved the absence of deadlock across multiple virtual T -

channels in the L2 Request Coalescer

* Repeatable method to detect deadlocks in complex
designs

202] Detecting Circular Dependencies in Forward Progress Checkers
DESIGN AND VERIFICATION™ Saurabh Chaurdia, Oski Technology

D v l:: D N Arun Khurana, Oski Technology
Naveen Kumar, Oski Technology
Aditya Chaurasiya, Oski Technology

HCCBIIEfa Yogesh Mahajan, NVIDIA
- Prasenjit Biswas, NVIDIA NVIDIA.

SYSTEMS INITIATIVE

GPU Level 2 Cache Request Coalescer

1 D\ ot

Formal expert (9+ yr)
(20% time)

Management

Divide and conquer:

Block Submodules: Req, Rsp

Prioritize: All
Function IP block, all checks are
important

Decompose:

ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)

Partition VC path to reduce
latency

Complexity

,,,,,,,

NNNNNNNNNNNNNNNNNNNN

GPU Level 2 Cache Request Coalescer

/1
Task

Management

Block

Function

Complexity

SYSTEMS INITIATIVE

DM\ ot

Planning

Formal expert (9+ yr)
(20% time)

Divide and conquer:
Submodules: Req, Rsp

Prioritize: All
IP block, all checks are
important

Decompose:

ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)

Partition VC path to reduce
latency

Implementation

Formal engineer (1+ yr)
Schedule: 6.5 months

Capture Interfaces:
Xbar Interface
L2 interface

End-to-End Checkers:
Request coalescing
Data integrity
Response replay
Forward progress

Abstraction Techniques:
Counter abstraction
Wolper’s method for data
consistency

Symbolic address/CAM ID
modeling

GPU Level 2 Cache Request Coalescer

/1
Task

Management

Block

Function

Complexity

D\

Lot
Planning

Formal expert (9+ yr)
(20% time)

Divide and conquer:
Submodules: Req, Rsp

Prioritize: All
IP block, all checks are
important

Decompose:

ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)

Partition VC path to reduce
latency

Formal engineer (1+ yr)
Schedule: 6.5 months

Capture Interfaces:
Xbar Interface
L2 interface

End-to-End Checkers:
Request coalescing
Data integrity
Response replay
Forward progress

Abstraction Techniques:
Counter abstraction
Wolper’s method for data
consistency

Symbolic address/CAM ID
modeling

16-core,
256GB memory server

Validate Constraints:
Simulation integrated;
cross-proved

RTL Bugs:
57 bugs found
7 corner-case issues

Formal Coverage:
Line: 100%
Condition: 100%

SYSTEMS INITIATIVE

NOC Configurable Cache Controller

« Simulation-only unable to deliver
required level of confidence for IP
products

« Too many configurations to test

« Cannot afford failures of untested
scenarios that render chip unusable

* Deployed formal sign-off
methodology
« 70+ bugs found
» >40% of bugs considered simulation-
resistant

« Confident that the last bug was found

Datapipe

command Tagpipe
Tag
mem datapi
fill state ° aplpe
2= operation
Bank Z\;Itc; evict
> » | controller Memory b data
il | controller ;drsp N >
ata
data " Rior(-jer rdrsp
ogic
: evict _ da'Ea
R Bank data - i
) ’ controller Memory >
. controller |rdrsp
write s data
data

SYSTEMS INITIATIVE

NOC Configurable Cache Controller

Formal expert (10+ yr, 25% time) Sr. Formal engineer (50% time) 16-core, 64GB server

BIEGEMET | oo e, 58 mamine 2x Formal engineer (2+ yr) 16-core, 512GB server

Divide and conquer:
Block Submodules: arbiters, cacheline
controller, DDR controller

Prioritize: All
LRU arbiter (module)
Cacheline (SV bind)

FUREIEA Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)
Decompose:

Complexity Tag and Data flow paths were

decomposed o

SYSTEMS INITIATIVE

NOC Configurable Cache Controller

Management

Block

Function

Complexity

SYSTEMS INITIATIVE

Formal expert (10+ yr, 25% time)

Schedule: 5-6 months

Divide and conquer:

Submodules: arbiters, cacheline

controller, DDR controller

Prioritize: All

LRU arbiter (module)
Cacheline (SV bind)

Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)

Decompose:
Tag and Data flow paths were
decomposed

Sr. Formal engineer (50% time)
2x Formal engineer (2+ yr)

Capture Interfaces:

Cmd and Register interfaces
Data SRAM interface

DDR RAM interface

Tag <> data interface

End-to-End Checkers:

Tag flow:

- Tag state, Eviction address/state
- Replacement policy

Data flow:

- Write/read data integrity

- Eviction data

Abstraction Techniques:

Reset abstractions

Cut-points

Symbolic sets for symmetric data in tag
and data memories

Data coloring for data consistency

16-core, 64GB server
16-core, 512GB server

Validate Constraints:
Simulation integrated; cross-
proved

Total 496 properties
76% proven

24% bounded

76 bugs

29 bugs are simulation
resistant

Formal Coverage:
Functional coverage
Assertion precondition

coverage
Checkers reach required proof Q\N"
depth 4 N

End-to-End Checking Methodology

Formal expertise Allocate formal Plan extra compute,
Management : :
Schedule & milestones " engineer resources vendor resources
Block |dentify and Evaluate ®Capture Interfaces ®Validate Constraints
Function Describe and Prioritize ®End-to—End Checkers Conclusiveness >
inconclusives

Complexity Decompose and Map ®Abstraction Technique£>Forma Coverage

S50z

Summary

 Block-level Formal Signoff with End-to-End Checking Methodology
« End-to-End Checkers
 Abstraction Techniques and Modeling
« Comprehensive for block-level formal signoff

* Major benefits
 Reduce time to First Bug: Shift-Left “Avoidable Bugs”
 Reduce time to Last Bug: Eliminate “Inevitable Bugs”

« Acknowledgement
* The support of the whole Oski Team in Gurugram, India.

