
Raising the level of Formal Signoff
with End-to-End Checking Methodology

Ping Yeung, Arun Khurana, Dhruv Gupta,

Ashutosh Prasad, Achin Mittal

Nvidia (Oski team), Santa Clara, CA, Gurugram India

Agenda

• Formal Verification Usage Levels

• End-to-End Checking Methodology

• End-to-End Checkers

• Abstraction Techniques and Modeling

• Testcases
• Parameterized Multi-cast Crossbar Design

• GPU Level 2 Cache Request Coalescer (LRC) unit

• NOC Configurable Cache Controller

Formal Verification Usage Levels

Level 5

System Deadlock
Cache Coherence
Sys-Level Security

System Arch.
Verification

Level 4

Block
Sign-Off

Load/Store Unit
Warp Sequencer
Cache Controller
Multi-Lane Aligner
MAC Rx Block

Exhaustive: Formal Sign-Off

AUTO
MODE

Level 1

Auto Checks
X-propagation
Unreachability

Auto FormalAUTO
MODE

Level 2

Connectivity
Register checks
Clock gating
Sequential LEC

Formal Apps

Shift Left; Formal Bug Hunting

RTL Assertions
Arbiter
FIFO
Handshake
Bus Protocol

SVA
PSL
OVL

Level 3

ABV Formal
SVA
PSL
OVL

ABV Formal
SVA
PSL
OVL

White-box approach Black-box approach (ideally)

Block-Level Formal Signoff
Different from traditional Assertion-based Verification

• Black-box approach; use end-to-end checkers; does not depend on RTL

• Divide-and-conquer with multiple formal testbenches

Early deployment

• Identify incomplete or ambiguous specifications early in the design cycle,

• Provide clear value to the project team because they map directly to the functional
specification

• Find more bugs and verify the block while the designer is coding the RTL

Exhaustiveness

• Replace simulation entirely and do a formal signoff of the block,

• Find deep or unaware corner case issues

Reusability

• reuse the formal testbench with updated RTL to quickly confirm a fix or find new issues

Level 4

Block
Sign-Off

Block-Level Formal Signoff
Different from traditional Assertion-based Verification

• Black-box approach; use end-to-end checkers; does not depend on RTL

• Divide-and-conquer with multiple formal testbenches

Early deployment

• Identify incomplete or ambiguous specifications early in the design cycle,

• Provide clear value to the project team because they map directly to the functional
specification

• Find bugs and verify the block while the designer is coding the RTL

Exhaustiveness

• Replace simulation entirely and do a formal signoff of the block,

• Find deep or unaware corner case issues

Reusability

• reuse the formal testbench with updated RTL to quickly confirm a fix or find new issues

Level 4

Block
Sign-Off

Block-Level Formal Signoff
Different from traditional Assertion-based Verification

• Black-box approach; use end-to-end checkers; does not depend on RTL

• Divide-and-conquer with multiple formal testbenches

Early deployment

• Identify incomplete or ambiguous specifications early in the design cycle,

• Provide clear value to the project team because they map directly to the functional specification

• Find bugs and verify the block while the designer is coding the RTL

Exhaustiveness

• Replace simulation entirely and do a formal signoff of the block,

• Find deep or unaware corner case issues

Reusability

• Use to confirm RTL fixes; ensure all scenarios are covered

• Reuse the formal testbench to verify new RTL code

Level 4

Block
Sign-Off

Agenda

• Formal Verification Usage Levels

• End-to-End Checking Methodology

• End-to-End Checkers

• Abstraction Techniques and Modeling

• Testcases
• Parameterized Multi-cast Crossbar Design

• GPU Level 2 Cache Request Coalescer (LRC) unit

• NOC Configurable Cache Controller

End-to-End Checking Methodology

Task Planning Implementation Closure

Management
Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Management
• Need a team of formal experts and engineers

• Formal experts with years of experience required for formal planning
• Formal engineers required for formal testbench implementation
• Careful partnering of formal engineers with design team members

• Need compute resources and vendor expertise
• Server farm environment for formal coverage and final signoff
• Vendor expertise to address some difficult properties

End-to-End Checking Methodology

Task Planning

Management
Formal expertise
Schedule & milestones

Block Identify and Evaluate

Function Describe and Prioritize

Complexity Decompose and Map

Block
• Identify blocks for E2E formal
• Evaluate to determine effort
Function
• Describe E2E functionality
• Prioritize them based on importance/risk
Complexity
• Decompose, divide-and-conquer
• Map them to one or more formal TBs

End-to-End Checking Methodology

Task Planning Implementation

Management
Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Block Identify and Evaluate Capture Interfaces

Function Describe and Prioritize End-to-End Checkers

Complexity Decompose and Map Abstraction Techniques

End-to-End Checking Methodology

Task Planning Implementation Closure

Management
Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Block Identify and Evaluate Capture Interfaces Validate Constraints

Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

Agenda

• Formal Verification Usage Levels

• End-to-End Checking Methodology

• End-to-End Checkers

• Abstraction Techniques and Modeling

• Testcases
• Parameterized Multi-cast Crossbar Design

• GPU Level 2 Cache Request Coalescer (LRC) unit

• NOC Configurable Cache Controller

End-to-End Checkers

Developing formal-friendly reference model could be as big an
effort as writing RTL

RTL Block

Output Handshake

Datapath Models

Control
path

checks

Data
path

checks

Input Handshake

Control Models

Interface Handshake

Abstraction Models

End-to-End Checker

End-to-End Checkers

Developing formal-friendly reference model could be as big an
effort as writing RTL

RTL Block

Output Handshake

Datapath Models

Control
path

checks

Data
path

checks

Input Handshake

Control Models

Interface Handshake

Abstraction Models

End-to-End Checker

Abstraction Techniques

Abstraction Technique Design Complexity Formal Efficiency

Case splitting
Multiple runs with different
cases reducing design
complexity per run/case

Reduce COI, reduce state
space per run/case

Cut-point/ Black box
Eliminate logic driving cut-
points/inside blackbox

Reduce COI, state space;
controlled with constraints

Abstraction Techniques

Abstraction Technique Design Complexity Formal Efficiency

Case splitting
Multiple runs with different
cases reducing design
complexity per run/case

Reduce COI, reduce state
space per run/case

Cut-point/ Black box
Eliminate logic driving cut-
points/inside blackbox

Increase flexibility but
controlled with constraints

Reset abstraction n.a. Reduce access depth

Counter abstraction n.a.
Reduce the length of
counting

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Symmetric data
elements [7]

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Reduce COI and state space
with symmetry

Abstraction Modeling 1

Abstraction Model Design Complexity Formal Efficiency

Symmetric data
elements [7]

Eliminate multiple dimensional
data elements; add single
dimension abstraction model

Reduce COI and state space
with symmetry

RTL model Abstraction model

element_type [SIZE-1:0] element;

element [addr] = wr_data;
rd_data = element [addr];

element_type abs_element;

if (addr == sym_addr) abs_element = wr_data;
if (addr == sym_addr) rd_data = abs_element;

$stable (sym_addr)

Abstraction Modeling 2

Abstraction Model Design Complexity Formal Efficiency

Memory abstraction
[7]

Represent one location instead
of the full size of the memory

Reduce COI and state space
with symmetry

RTL memory: reg [WIDTH-1:0] mem [DEPTH-1:0];
abstraction memory: reg [WIDTH-1:0] mem;
assume property: (sym_addr < DEPTH) ##1 $stable(sym_addr)
abstraction write: if (wr && (wr_addr == sym_addr)) mem <= wr_data;
abstraction read: if (rd && (rd_addr == sym_addr)) rd_data = mem;

Abstraction Modeling 3

Abstraction Model Design Complexity Formal Efficiency

FIFO [7]
Eliminate logic before cut-
points; add abstraction model

Reduce the depth of the FIFO

wire [LOG_DEPTH-1:0] sym_depth;
assume property: (sym_depth > 1 && sym_depth < DEPTH) ##1 $stable(sym_depth)

abstraction model: if (wr_ptr == sym_depth) wr_ptr <= 0;
else wr_ptr <= wr_ptr + 1;

Abstraction Modeling 4

Abstraction Model Design Complexity Formal Efficiency

Data independence
(Wolper Coloring) [6]

Eliminate all storage elements;
add Wolper FSMs

Reduce COI with pattern

The rules for generating and verifying the Wolper sequence are:

1. If the first 1 is seen, next one should be 1

wolper_1st_1_seen_next_1: (first_one && !second_one && input_valid) |-> (colored_input == 1'b1)

2. If two 1’s are seen, only 0’s should be seen

wolper_2nd_1_seen_forever_0: (second_one && input_valid) |-> (colored_input == 1'b0)

Abstraction Modeling Summary

Abstraction Modeling Design Complexity Formal Efficiency

Symmetric data elements [7]
Eliminate multiple dimensional data
elements; add single dimension abstraction
model

Reduce COI and state space with
symmetry

Memory abstraction [7]
Represent one location instead of the full
size of the memory

Reduce COI and state space with
symmetry

FIFO [7]
Eliminate logic before cut-points; add
abstraction model

Reduce the depth of the FIFO

Data independence
(Wolper Coloring) [6]

Eliminate all storage elements; add Wolper
FSMs

Reduce COI with pattern

Tagging [9]
Represent one tag instead of the complete
linked list

Reduce COI

Agenda

• Formal Verification Usage Levels

• End-to-End Checking Methodology

• End-to-End Checkers

• Abstraction Techniques and Modeling

• Testcases
• Parameterized Multi-cast Crossbar Design

• GPU Level 2 Cache Request Coalescer (LRC) unit

• NOC Configurable Cache Controller

Parameterized Multi-cast Crossbar Design

• 8x8 Crossbar design
• each client can send request to 1+ targets

• Each target has an arbiter to decide which
request gets forwarded based on priorities

• Abstraction Deployed
• symbolic variables used to select a

client/target and implemented all of the
checkers for the symbolic client and target
pair.

• Formal explore all possible values for the
symbolic variables

FIFO0
client_0

target_0

C0 C1 C6 C7

T0 T6 T7T1

client_1

target_1

client_6

target_6

FIFO3
client_7

target_7

8x8 Multicast Crossbar

26

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

• Control path end-to-end checkers:
• An arbitration checker (a combination of two checkers) for the arbitration scheme

• A consistency checker to ensure no spurious grant is given to a client

• Performance checkers to ensure operations are performed in each cycle when
the conditions are met.

• Data path end-to-end checkers:
• Data integrity checkers to ensure correct transfer

• from read data input port to buffer

• from buffer to store output port.

• data is not corrupted, duplicated, reordered, or dropped.

• Wolper coloring technique: doesn’t require data storage

Control Path and Data Path Checkers

Multi-cast Crossbar Design:

• Control path end-to-end checkers:
• An arbitration checker (a combination of two checkers) for the arbitration scheme

• A consistency checker to ensure no spurious grant is given to a client

• Performance checkers to ensure operations are performed in each cycle when
the conditions are met.

• Data path end-to-end checkers:
• Data integrity checkers to ensure correct transfer

• from read data input port to buffer

• from buffer to store output port.

• data is not corrupted, duplicated, reordered, or dropped.

• Wolper coloring technique: doesn’t require data storage

Parameterized Multi-cast Crossbar Design
Task Planning Implementation Closure

Management
Formal expert (6+ yr)
(20% time)

Formal engineer (2+ yr)
Schedule: 1.5 months

8-core, 48GB memory server

Block
Divide and conquer:
n.a.

Capture Interfaces:
Client inputs/outputs
Target inputs/outputs

Validate Constraints:
Simulation integrated

Function

Prioritize:
Data correctness
Arbitration workload
Sequence of data flow

End-to-End Checkers:
Data integrity (Wolper)
Target arbitration
Forward progress checkers

RTL Bugs:
73 known bugs found

Complexity
Decompose:
n.a.

Abstraction Techniques:
Use symmetric elements;
symbolic variable on client
and target pair

Formal Coverage:
Line: 100%
Condition: 100%

Ipshita Tripathi, Ankit Saxdna, et al., "Process & Proof for Formal Signoff - Live Case Study," DVCon 2016

GPU Level 2 Cache Request Coalescer (LRC)
unit
• Risk of top-level deadlock bugs

• Top-level simulation coverage is insufficient

• Blocks with embedded stall conditions introduce
dependencies

• Developed a novel approach for deadlock
detection

• Proved the absence of deadlock across multiple virtual
channels in the L2 Request Coalescer

• Repeatable method to detect deadlocks in complex
designs

GPU Level 2 Cache Request Coalescer
(LRC) unit Task Planning

Management
Formal expert (9+ yr)
(20% time)

Block
Divide and conquer:
Submodules: Req, Rsp

Function
Prioritize: All
IP block, all checks are
important

Complexity

Decompose:
ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)
Partition VC path to reduce
latency

GPU Level 2 Cache Request Coalescer
(LRC) unit Task Planning Implementation

Management
Formal expert (9+ yr)
(20% time)

Formal engineer (1+ yr)
Schedule: 6.5 months

Block
Divide and conquer:
Submodules: Req, Rsp

Capture Interfaces:
Xbar Interface
L2 interface

Function
Prioritize: All
IP block, all checks are
important

End-to-End Checkers:
Request coalescing
Data integrity
Response replay
Forward progress

Complexity

Decompose:
ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)
Partition VC path to reduce
latency

Abstraction Techniques:
Counter abstraction
Wolper’s method for data
consistency
Symbolic address/CAM ID
modeling

GPU Level 2 Cache Request Coalescer
(LRC) unit Task Planning Implementation Closure

Management
Formal expert (9+ yr)
(20% time)

Formal engineer (1+ yr)
Schedule: 6.5 months

16-core,
256GB memory server

Block
Divide and conquer:
Submodules: Req, Rsp

Capture Interfaces:
Xbar Interface
L2 interface

Validate Constraints:
Simulation integrated;
cross-proved

Function
Prioritize: All
IP block, all checks are
important

End-to-End Checkers:
Request coalescing
Data integrity
Response replay
Forward progress

RTL Bugs:
57 bugs found
7 corner-case issues

Complexity

Decompose:
ILC (submodule) blackbox
Design Shrinking (FIFO and
CAM)
Partition VC path to reduce
latency

Abstraction Techniques:
Counter abstraction
Wolper’s method for data
consistency
Symbolic address/CAM ID
modeling

Formal Coverage:
Line: 100%
Condition: 100%

NOC Configurable Cache Controller

• Simulation-only unable to deliver
required level of confidence for IP
products

• Too many configurations to test

• Cannot afford failures of untested
scenarios that render chip unusable

• Deployed formal sign-off
methodology

• 70+ bugs found

• >40% of bugs considered simulation-
resistant

• Confident that the last bug was found

rdrsp
data

evict
data

Tagpipe

Tag
mem

N

command

fill state datapipe
operation

Datapipe

Data
mem

M
rdrsp
data

evict
data

rdrsp
data

evict
data

Bank
controller Memory

controller

Bank
controller Memory

controller

Reorder
Logic

fill
data

M

write
data

NOC Configurable Cache Controller
Task Planning Implementation Closure

Management
Formal expert (10+ yr, 25% time)
Schedule: 5-6 months

Sr. Formal engineer (50% time)
2x Formal engineer (2+ yr)

16-core, 64GB server
16-core, 512GB server

Block
Divide and conquer:
Submodules: arbiters, cacheline
controller, DDR controller

Capture Interfaces:
Cmd and Register interfaces
Data SRAM interface
DDR RAM interface
Tag <> data interface

Validate Constraints:
Simulation integrated; cross-
proved

Function

Prioritize: All
LRU arbiter (module)
Cacheline (SV bind)
Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)

End-to-End Checkers:
Tag flow:
- Tag state, Eviction address/state
- Replacement policy
Data flow:
- Write/read data integrity
- Eviction data

Total 496 properties
76% proven
24% bounded
76 bugs
29 bugs are simulation
resistant

Complexity
Decompose:
Tag and Data flow paths were
decomposed

Abstraction Techniques:
Reset abstractions
Cut-points
Symbolic sets for symmetric data in tag
and data memories
Data coloring for data consistency

Formal Coverage:
Functional coverage
Assertion precondition
coverage
Checkers reach required proof
depth

NOC Configurable Cache Controller
Task Planning Implementation Closure

Management
Formal expert (10+ yr, 25% time)
Schedule: 5-6 months

Sr. Formal engineer (50% time)
2x Formal engineer (2+ yr)

16-core, 64GB server
16-core, 512GB server

Block
Divide and conquer:
Submodules: arbiters, cacheline
controller, DDR controller

Capture Interfaces:
Cmd and Register interfaces
Data SRAM interface
DDR RAM interface
Tag <> data interface

Validate Constraints:
Simulation integrated; cross-
proved

Function

Prioritize: All
LRU arbiter (module)
Cacheline (SV bind)
Tag flow path (SV bind)
Data flow path (SV bind)
4x interfaces (SV bind)

End-to-End Checkers:
Tag flow:
- Tag state, Eviction address/state
- Replacement policy
Data flow:
- Write/read data integrity
- Eviction data

Total 496 properties
76% proven
24% bounded
76 bugs
29 bugs are simulation
resistant

Complexity
Decompose:
Tag and Data flow paths were
decomposed

Abstraction Techniques:
Reset abstractions
Cut-points
Symbolic sets for symmetric data in tag
and data memories
Data coloring for data consistency

Formal Coverage:
Functional coverage
Assertion precondition
coverage
Checkers reach required proof
depth

End-to-End Checking Methodology

Task Planning Implementation Closure

Management
Formal expertise
Schedule & milestones

Allocate formal
engineer resources

Plan extra compute,
vendor resources

Block Identify and Evaluate Capture Interfaces Validate Constraints

Function Describe and Prioritize End-to-End Checkers Conclusiveness

Complexity Decompose and Map Abstraction Techniques Formal Coverage

inconclusives

Summary

• Block-level Formal Signoff with End-to-End Checking Methodology
• End-to-End Checkers

• Abstraction Techniques and Modeling

• Comprehensive for block-level formal signoff

• Major benefits
• Reduce time to First Bug: Shift-Left “Avoidable Bugs”

• Reduce time to Last Bug: Eliminate “Inevitable Bugs”

• Acknowledgement
• The support of the whole Oski Team in Gurugram, India.

