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Abstract - The use of formal verification has been steadily increasing thanks to the widespread adoption of automatic 
formal, formal applications and assertion-based formal checking. However, to continue finding bugs earlier in the design 

process, we must advance formal verification beyond focusing on a handful of localized functionalities toward completely 
verifying all block-level design behaviors. An end-to-end formal test bench methodology allows the RTL designer and 
formal verification engineer to work parallelly to finish design and verification on all functionality formally signed-off as 

bug-free. Given that today's formal tools cannot close the end-to-end checkers required to verify complex IP blocks, we 
must rely on methodology to tackle design complexity in a way that allows the formal tool to converge in project time. 
This paper aims to demystify the end-to-end formal test bench methodology and discusses how we can reduce the com-

plexity of the design with functional decomposition and abstraction techniques. 

I. INTRODUCTION 

Many companies have used formal verification to verify complex SOCs [1] and safety-critical designs [2]. In addi-

tion, formal verification has been used for assurance [2], bug hunting [3], and coverage closure [6][7]. As companies 

have adopted formal verification, we can classify the usage into five maturity levels, as depicted in Figure 1. 

 

 
 

Figure 1: Formal verification usage levels 

 

o Level 1: Automatic Formal such as auto-checking, formal linting, dead-code identification, etc 

o Level 2: Formal Applications such as connectivity checking, register checking, X checking, etc 

o Level 3: Assertion-based Formal Verification such as interface and bus assertions, embedded assertions, etc 

o Level 4: Block-level Signoff that thoroughly verifies all block-level design behaviors. 

o Level 5: System Architectural-level Verification focusing on specific high-level design requirements 

 

Level 1 to 3 has been supported well by EDA vendors. Hence, we are not going to cover them. Level 4 introduces 

end-to-end checking methodology, which means the DUT is exhaustively verified, and block-level simulation is 

completely replaced for that DUT. Once the end-to-end checkers have captured the design specification, the DUT is 

signed off with formal verification. Level 5 formal aims to prove that the system architecture is correct for specific 

requirements such as cache coherence or that the system is deadlock-free. System architectural-level verification 

requires significant expertise, effort, and decomposition of the targeted problem. 

 

This paper focuses on Level 4 block-level signoff as it is a unique reliance usage of formal verification. It provides a 

good return on investment because you can: 



o find more bugs and verify the block while the designer is coding the RTL (early deployment),  

o replace simulation entirely and do a formal signoff of the block (exhaustiveness), 

o reuse the formal testbench with updated RTL to quickly confirm a fix or find new issues (reusability). 

 

Unfortunately, it is still not commonly used in today's industry because few companies have invested in it, few man-

agers have taken the risk of deploying it, and few engineers know how to use it effectively. This paper tries to ad-

dress these knowledge gaps by explaining how an end-to-end formal checking methodology can achieve block-level 

signoff. In addition, we will discuss the formal testbench planning, implementation, and signoff process. Finally, we 

will explain how to address the design complexity issue with functional decomposition and abstraction techniques. 

II.  END-TO-END CHECKING METHODOLOGY 

The concept of end-to-end formal checking was first introduced in the tutorial of FMCAD [7]. Although it had ex-

plained the concept clearly, it did not describe much about the planning and deployment process. To successfully 

replace block-level simulation with formal signoff, we need to start the end-to-end formal testbench development 

early in the design cycle. Therefore, commitment from management in the process is essential. Organization-wise, 

management will acquire formal expertise, allocate formal engineers to partner with RTL designers, and plan for 

compute resources. Table 1 summarizes the three phases of the end-to-end checking methodology. They are the for-

mal test planning phase, implementation phase, and closure phase. 

 

Task Planning Implementation Closure 

Management 
Acquire formal 
expertise 

Allocate formal 
engineer resources 

Plan extra compute and 
vendor resources 

Block Identify and Evaluate Capture Interfaces Validate Constraints 

Function Describe and Prioritize End-to-End Checkers Conclusiveness 

Complexity Decompose and Map Abstraction Techniques Formal Coverage 

 
Table 1: Formal Planning, Implementation, and Closure of End-to-End Checking Methodology 

A. Formal test planning 

 

Formal test planning was first described years ago in [8] and again in [6]. It is the most critical step in the End-to-

End checking methodology. The formal test planning process consists of:  

• identify the right blocks to apply formal and evaluate the design metrics to determine the effort, 

• describe the list of test requirements w.r.t. the design specification and prioritize them, 

• decompose complex test requirements into manageable ones and map them to the design 

 

An excellent formal test plan leads the subsequent testbench execution on a path that is predictable and trackable. 

Thus, it avoids potential problems and delivers the best return on investment for the project. However, the planning 

processes require past formal signoff experience and intimate design knowledge. Hence, it is best to be done by an 

experienced formal expert in conjunction with the design team.  

 

Sometimes, the block we want to verify is too complex for formal verification or does not align with the test require-

ments. In these cases, we will need to take a divide and conquer approach to partition the block explicitly into sub-

modules or virtually with SystemVerilog bind statements. Sub-modules can be created with well-defined functional-

ity and interfaces when design teams consider formal complexity early in the design cycle. Then, these sub-modules 

can be verified cleanly and concurrently. A good example is to have arbitration logic in a submodule. Another one is 

the IDMA, DMAC, and ODMA submodules in the CNN DMA Controller [4]. On the other hand, System Verilog 

bind statements can help align the design corresponding to the test requirements. For example, a bind statement can 

be used for each interface of the design. Furthermore, additional bind statements can focus on the different data flow 

of the design and data integrity at the data transport parts of the design. Using these bind statements, we have a pow-

erful way to partition the design corresponding to the test requirements not limited by the design hierarchy. 

 



Test requirement mapping is another common problem. For example, the design specification or the test requirement 

may discuss some high-level behaviors, such as data starving, back-pressure, or head-of-line blocking. As these con-

cepts and conditions are not generally captured explicitly in the RTL code. Extra monitoring models will need to be 

written to detect these concerned cases. 

B. Formal Testbench Implementation 

 

It is the implementation phase of the formal test plan and requires careful partnering of formal engineers with design 

team members. Verification tasks should be assigned and tracked at this phase. It involves: 

• capturing the interface properties as assertions or constraints,  

• implementing end-to-end checkers to verify the behavior of the design and,  

• planning and preparing abstraction models when necessary.  

 

Interface properties used as output assertions for one block will be used as input constraints for another. Therefore, it 

is helpful to make sure they can be switched easily. End-to-end checkers serve as a reference model of the design-

under-test (DUT). When we engage with design teams early in the process, the end-to-end checker is developed 

side-by-side with the RTL code. It references the same design specification as the RTL design. Hence, it can provide 

early feedback on the correctness of the design, ensure its quality, and evolve with the design changes. Abstraction 

models are techniques to help formal verification short-circuit the depth and reduce the state space of a design. They 

will not be needed until the formal testbench environment is up and running. However, it will be late if some proper-

ties fail to converge and abstraction models are needed late in the schedule. In addition, some complex abstraction 

models will take time to develop. Therefore, it is much better to plan for them, especially for data integrity-related 

abstraction models. To smoothly execute the formal testbench implementation phase, skillsets such as writing effi-

cient formal test benches, understanding essential formal tool features, capabilities, and limitations, and applying 

formal techniques to manage design complexity are crucial. 

 

Similar to other verification processes, a formal testbench implementation process is very iterative. For example, it 

is common for an end-to-end checker to fail in shadow depth initially. However, during the debugging process, it 

enables a deeper understanding of the design, leading to a refinement of the checker and assumptions. This refine-

ment process ensures the formal tool explores all corner-case scenarios from easy to complex until the end-to-end 

checker is validated. 

C. Formal Closure 

 

This is the final closure phase that determines if the formal testbench has reached signoff status. To ensure the for-

mal testbench has reached signoff quality, one must 

• validate the constraints to make sure they are not over-constraining, 

• prove, debug, fix and conclude all the end-to-end checkers, 

• examine and determine that the formal coverage is sufficient 

 

However, before looking at the qualitative measurements, one critical question (to ask one final time) is: have we 

verified all the dead-on-arrival, worrying, and corner cases. Most design specifications describe the expected behav-

ior of the design; seldom will they talk about the error and unexpected scenarios. One job of the formal engineers is 

to think of the potentially distressing situations, ask questions, capture them and verify that they will or will not hap-

pen. A practical approach is to examine the bugs found by other verification approaches such as simulation and 

emulation. Although the bugs may have already been fixed, have they been verified thoroughly against all scenar-

ios? For a known bug, formal verification is good at finding all possible triggers and ensuring that the fix will cover 

all possible scenarios. 

 

The most practical way to verify constraints and assumptions is to integrate them into the simulation regression. We 

want to ensure there is no unintentional over-constraint. However, observing simulation coverage of these properties 

is essential. We need to make sure they are being exercised by simulation. Similar to simulation coverage, formal 

coverage can be measured using line, branch, state, and transition coverages. Cone-of-influence (COI) coverage can 

be used early in the implementation phase to ensure sufficient end-to-end checkers cover the whole design. Then, at 

the closure phase, formal core coverage can measure how much formal verification has exercised the design. To en-

sure the design specifications are verified, end-to-end checkers should be proven or have reached the Required Proof 

Depth (RPD)[9]. The RPD depends on the micro-architecture of the design. Therefore, it is calculated using several 



factors, including the latency of the design, the reached interesting corner-cases, the fired counter-examples, etc. Fi-

nally, there may still be formal failures (counter-examples) that are outside the design specification. We can docu-

ment them literally as unsupported scenarios. However, the best way to capture them is to specify the constraints or 

assumptions required to make them conclusive.  

 

III. CREATION OF END-TO-END CHECKERS 

 

 
Figure 2: The structure of an end-to-end checker 

 

In order to sign off a block with formal verification, the Level 3 formal bug hunt approach is insufficient. The lo-

cally embedded assertions rely on the correctness of the RTL code to catch corner-case bugs. For instance, a FIFO 

will need to store data before it overflows. Hence, if formal verification is to be relied upon as a primary verification 

methodology for a design, end-to-end checkers must be used to capture the functionality of the design. When com-

pared to low-level assertions, end-to-end checkers are much more comprehensive as they: 

• Provide clear value to the project team because they map directly to the functional specification, 

• Identify incomplete or ambiguous specifications early in the design cycle, 

• Provide the highest return on investment as it can identify deep or unaware corner case issues. 

 

An end-to-end checker uses RTL code to describe a reference model for the required behavior of the block. We 

roughly divide it into four components. As shown in Figure 2, it consists of input handshake, output handshake, con-

trol path, and data path. For each interface of the design block, the input handshake captures the interface properties 

and uses them as constraints. In addition, it extracts the control and data signals for the reference model. The output 

handshake makes sure that the output signals follow the defined protocols. It also extracts the control and data sig-

nals to check their values by the reference model. Not surprisingly, proving the end-to-end checkers is usually com-

putationally much more complex than local checkers. It is one of the reasons that we recommend separating the con-

trol and the datapath logic. It allows us to focus on the control logic first. As we will describe in the next section, 

various abstraction techniques can be used differently on the control and the datapath logic. The control logic is nor-

mally modeled as finite state machines in the RTL code to be efficient and compact. However, complex FSMs with 

many input signals and fan-in logic may become bottlenecks for formal verification.  Since the formal testbench is 

not going to be synthesized, we can code the control logic as multiple FSMs, or sequences that can be enabled based 

on the operational functionality of the design. 

 

Finally, to give some examples, in the multi-cast crossbar design [6] and the CNN DMA controller design [4], they 

consist of the following end-to-end checkers: 

• Control path end-to-end checkers: 

o Arbitration checkers (a combination of two checkers) for the arbitration scheme 

o Consistency checkers to ensure no spurious grant is given to a client 

o Forward progress checkers to verify that a request will reach the target output within a finite time 

o Predict and compare checkers for address correctness of the DMA load/store operations 

o Performance checkers to ensure read/store operations are performed in each cycle when the condi-

tions are met. 

• Data path end-to-end checkers: 

o A data integrity checker to ensure correct transfer from the client to the desired target i.e. data is 

not corrupted, duplicated, reordered, or dropped. 

o Data integrity checkers to ensure correct transfer 1) from read data input port to DMA buffer, and 

2) from DMA buffer to store output port. 



 

To verify data transportation logic, we use the Wolper coloring technique [6]. It is a practical approach that doesn't 

require any data stored in the checker logic for data integrity checking. When the input is constrained to follow the 

Wolper coloring sequence, as in figure 4, we verify if the same sequence is received at the output. Once set up, for-

mal verification will find ways to break the sequence. However, if proved, it confirms that the data is correctly trans-

ferred; it is not corrupted, duplicated, reordered, or dropped. 

 

The rules for generating or verifying Wolper sequence are: 
1. If the first 1 is seen, next input/output should be 1 

wolper_1st_1_seen_next_1:  (first_one && !second_one && input_valid) |-> (colored_input == 1'b1) 
2. If two 1’s are seen, only 0’s should be seen 

wolper_2nd_1_seen_forever_0:  (second_one && input_valid) |-> (colored_input == 1'b0) 
 

Figure 4: The rules of the Wolper sequence 

 

IV. ADOPTION OF ABSTRACTION TECHNIQUES  

If we want to verify a block's end-to-end behavior, design complexity is one of the success factors [3] we need to 

conquer. Although tool vendors have been working hard to improve the tool capability, adopting efficient abstrac-

tion techniques is still the most efficient way to help formal verification deliver conclusive results and coverage clo-

sure. The process includes 

o Identify potential areas of design complexity 

o Formulate abstraction techniques 

o Applying design domain knowledge to determine suitable abstractions 

o Leverage assume/guarantee reasoning and symmetries in the design 

o Reuse abstraction models for common elements such as FIFOs, memories, etc 

o Deploy abstraction models and evaluate the efficacy 

 

Formal verification tools have been advanced sufficiently to identify potential areas of design complexity. By exam-

ining the core-of-influence (COI), we can find the design elements that have caused the formal engines to stall. A set 

of commonly used abstraction techniques and models are summarized in Table 2. These abstraction techniques and 

manually crafted abstraction models can reduce the required proof depths and the state space of a design to make 

formal runs less computationally expensive.  

 

Abstraction Technique Design Complexity Formal Efficiency 

Case splitting 

 

Multiple runs with different cases re-

ducing design complexity per run/case 

Reduce COI, reduce state space per 

run/case 

Cut-point/ Black box Eliminate logic before cut-

points/blackbox; add constraints 

Increase flexibility but controlled 

with constraints 

Reset abstraction n.a. Reduce access depth 

Counter abstraction n.a. Reduce the length of counting 

Symmetric data elements 

[7] 

Eliminate multiple dimensional data 

elements; add single dimension ab-

straction model 

Reduce COI with symmetry 

FIFO [7] Eliminate logic before cut-points; add 

abstraction model 

Reduce the depth of the FIFO 

Data independence [7][6] Eliminate all storage elements; add 

Wolper FSMs 

Reduce COI with pattern 

Memory abstraction [7] Represent one location instead of the 

full size of the memory 

Reduce COI with symmetry 

Tagging [9] Represent one tag instead of the com-

plete linked list 

Reduce COI 

 
Table 2: Abstraction Techniques and Models 

 

Case splitting decomposes a complex design into multiple formal runs. Each run is constrained to focus on a particu-

lar configuration or case. As a result, it reduces the cone-of-influence (COI) and the state space of each formal run.  



Abstraction using cut-points and black-box are similar. Both approaches remove the complex logic from the COI. 

Thus, these cut-points and the outputs of the black box become control points for formal verification. We can add 

appropriate constraints. The goal is to reduce complexity and increase flexibility for formal verification. Resettable 

registers and counters are common elements in a design. However, it may take a long sequence of activities to load 

an interesting value into a critical register or counter. Reset and counter abstraction short-circuit the process and ena-

ble formal to control these elements more directly. These approaches have been supported by various tool vendors 

effectively.  

 

On the other hand, more advanced abstraction techniques will require a good understanding of the design and mod-

eling. For example, for data transport designs such as memory controllers, cache controllers, or DMA controllers, 

there are a lot of symmetric data elements in the design. To reduce complexity, we can write checkers to verify one 

symbolic address of the data element only. Thus, it will reduce complexity from SIZE*WIDTH for all data elements 

to 1*WIDTH for the symbolic address. Table 3 below shows how an abstraction model is different from the original 

RTL. When RTL reads the memory location corresponding to the symbolic address, the value last written is re-

turned. At the same time, end-to-end checkers will check data integrity corresponding to the symbolic address only. 

 

RTL model Abstraction model 

element_type [SIZE-1:0] element; 
 

element [addr] = wr_data; 
rd_data = element [addr]; 

element_type abs_element; 
 

if (addr == sym_addr) abs_element = wr_data; 
if (addr == sym_addr) rd_data = abs_element; 

 
Table 3: The abstraction model for symmetric data elements 

 

Deep FIFOs are challenging for formal verification in general. An easy way to reduce the design complexity of a 

FIFO is to minimize the DEPTH parameter. However, this approach cuts the verification state-space forcefully. A 

more mature approach is to enable formal verification to explore and set the FIFO depth as needed. As illustrated in 

Figure 5, a symbolic depth is defined and used to determine the FIFO full and back-pressure conditions. The assume 

property ensures that the sym_depth, once set by formal, remains constant throughout the process. The sym-depth 

can be as small as 2 or a more significant value if the number of entities is essential for formal coverage. Then, the 

FIFO can be filled quickly, and the subsequent back-pressure logic can be verified. 

 

wire [$clog2(DEPTH)-1:0]  sym_depth; 
assume property:  (sym_depth > 1 && sym_depth < DEPTH) ##1 $stable(sym_depth) 
abstraction model: replace DEPTH with sym_depth 
assert property:   pop |-> (data_out == mem[rd_ptr]) 

 
Figure 5: The abstraction model of a FIFO 

 

When data is transported in sequence without modification, we can use the Wolper coloring technique [6], illus-

trated earlier in Figure 4. It verifies the data integrity of the RTL structure. Furthermore, this approach can be com-

bined with the other abstraction technique, such as the symbolic depth, to verify the end-to-end integrity of the FIFO 

and its memory. On the other hand, when data is stored and used later, we can represent the memory as one sym-

bolic address instead of the complete array. It leverages the same approach as the abstraction model for symmetric 

data elements in Table 3. As illustrated in Figure 6, there is a symbolic address and one memory storage. Data is 

stored and retrieved from the single memory location when the address matches the symbolic address. With formal 

verification, it will explore all possible values for the symbolic address. 

 

RTL memory:  reg [WIDTH-1:0] mem [DEPTH-1:0]; 
abstraction memory: reg [WIDTH-1:0] mem; 
assume property:  (sym_addr < DEPTH) ##1 $stable(sym_addr) 
abstraction write:  if (wr && (wr_addr == sym_addr)) mem <= wr_data; 
abstraction read:  if (rd && (rd_addr == sym_addr)) rd_data = mem; 

 
Figure 6: The abstraction model of a memory 

 



In design with a scheduler or allocator, incoming requests are stored as tags. As tags can be created and freed out of 

order, they are managed as a linked list. Therefore, instead of handling a tag manager with 1000s of tags, we replace 

it with an abstraction model that contains only one symbolic tag. As shown in Figure 7, the assume property is used 

to ensure the symbolic tag value remains constant throughout the formal run. Then, a simple state machine, with 

IDLE and STAG states [9], is used to represent the allocation and freeing of the tag. In addition, assume and assert 

properties are added to the output and input ports of the tag manager: 

- Assume property: ensure when the sym_tag has been stored, it cannot be granted again.  

- Assert property: ensure when the sym_tag has been freed, it cannot be returned again. 

 

assume property:  ##1 $stable(sym_tag) 
 
IDLE → STAG transition: grant && (grant_tag == sym_tag) – stored sym_tag 
STAG → IDLE transition:  return && (return_tag == sym_tag) – freed sym_tag 
 
output assume property:  (state == STAG) |-> (!empty) 
output assume property:  (state == STAG && grant) |-> (grant_tag != sym_tag) 
 
input assert property:  (state == IDLE && return) |-> (return_tag != sym_tag) 
input assert property:  (state == IDLE) |-> “sym_tag is eventually returned” 

 
Figure 7: The abstraction model of a tag 

 

V.  RESULTS  

Many companies have successfully deployed block-level formal verification signoff with the end-to-end checking 

methodology. Besides finding bugs early in the design cycle, they have also experienced additional benefits. For 

example, with the end-to-end checking formal testbench already in place, some projects added late-stage features 

and confidently debugged them. More importantly, no bug was found in the blocks afterward in integrated simula-

tion regression, system-level simulation, and the designs were taped out successfully. 

A. Parameterized multi-cast crossbar design [6] 

 

It was the design used in the "Break the Testbench" challenge at DAC 2015. Attendees were invited to insert 

functional bugs in the design and watch the bugs being caught by the end-to-end checking formal testbench.  

 

Task Planning Implementation Closure 

Manage-

ment 

Formal expert (6+ yr) 

(20% time) 

Formal engineer (2+ yr) 

Schedule: 1.5 months 

8-core, 48GB memory 

server 

Block 
Divide and conquer: 

n.a. 

Capture Interfaces: 

Client inputs/outputs 

Target inputs/outputs 

Validate Constraints: 

Simulation integrated 

Function 

Prioritize: 

Data correctness 

Arbitration workload 

Sequences  

End-to-End Checkers:  

Target arbitration 

Data integrity (Wolper) 

Forward progress checks 

RTL Bugs:  

73 known bugs found 

Complexity 
Decompose:  

n.a.  

Abstraction Techniques: 

Use symmetric elements; 

symbolic variable on client 

and target pair 

Formal Coverage: 

Line: 100% 

Condition: 100% 

 
Table 3: Summary of E2E Checking Methodology for a parameterized multi-cast crossbar design 



The complete end-to-end checking methodology for this block is summarized in Table 3. 73 RTL bugs were inserted 

during the process, and all of them were exposed by one or more checkers. It was an excellent exercise to demon-

strate that end-to-end checking is a comprehensive methodology. Moreover, it can replace simulation regression to 

weed out bugs exhaustively very early in the design cycle. For this design, we had parameterized it to have 8 clients 

and 8 targets. In a simulation testbench, we would have written checkers for 64 different pairs of clients and targets. 

However, in the formal testbench, we leveraged symbolic variables to select a client/target and implemented all of 

the checkers for the symbolic client and target pair. Then, formal verification can explore all possible values for the 

symbolic variables while ensuring that none of the checkers will fail. 

B. GPU Level 2 Cache Request Coalescer (LRC) unit [5] 

 

The design is GPU Level 2 Cache Request Coalescer (LRC) unit. There are 6 virtual channels (VCs) that are pro-

cessed in parallel in the design. Flow control from REQ to L2 is credit-based, with credits issued by L2 on a per-VC 

basis. In addition, we developed a special end-to-end checker to detect circular dependencies in the stall conditions 

of forward progress checkers. This circular dependency checker exhaustively traverses all entries in the dependency 

table and detects all possible loops. Symbolic variables were used to enable formal verification to select all values 

for the initial stalled block and the next stalling block. The complete end-to-end checking methodology for this 

block is summarized in Table 4. 

 

Task Planning Implementation Closure 

Manage-

ment 

Formal expert (9+ yr) 

(20% time) 

Formal engineer (1+ yr) 

Schedule: 6.5 months 

16-core,  

256GB memory server 

Block 
Divide and conquer: 

Submodules: Req, Rsp  

Capture Interfaces: 

Xbar Interface 

L2 interface  

Validate Constraints: 

Simulation integrated; 

cross-proved 

Function 

Prioritize: All 

IP block, all checks are 

important 

End-to-End Checkers: 

Request coalescing 

Data integrity 

Response replay 

Forward progress 

RTL Bugs:  

57 known bugs found 

7 corner-case bugs 

Complexity 

Decompose:  

ILC (submodule) black-

box 

Design Shrinking (FIFO 

and CAM) 

Partition VC path to re-

duce latency 

Abstraction Techniques: 

Counter abstraction 

Wolper’s method for 

data consistency 

Symbolic address/CAM 

ID modeling  

Formal Coverage: 

Line: 100% 

Condition: 100%  

 
Table 4: Summary of E2E Checking Methodology for a GPU Level 2 Cache Request Coalescer unit 

 

C. Network-on-Chip (NOC) Configurable Cache Controller  

 

The cache controller is one kind of design that we have verified numerous times in the past years. A recent one is a 

configurable cache controller in a complex NOC design. There are many configurations and modes of operation that 

simulation alone would be insufficient to verify thoroughly. The complete end-to-end checking methodology is sum-

marized in Table 5 below. To handle the complexity of this design, we developed two separated formal testbenches: 

1. Tag flow: smaller latency, abstraction memories, operates on all ways in the set 

2. Data flow: long latency, abstraction memories, focuses on transaction failures in some 

In addition, we maintained a clean and well-understood interface between these two testbenches. The properties on 

the tag/data flow interface were cross-proved to ensure completeness. 

 



Task Planning Implementation Closure 

Manage-

ment 

Formal expert (10+ yr, 

25% time) 

Schedule: 5-6 months 

Sr. Formal engineer (50% 

time) 

2x Formal engineer (2+ yr) 

16-core, 64GB server  

16-core, 512GB 

server 

Block 

Divide and conquer: 

Submodules: arbiters, 

cacheline controller, DDR 

controller, FIFOs 

Capture Interfaces: 

Cmd interface 

Register interface 

Data SRAM interface 

DDR RAM interface 

Tag <> data interface 

Validate Constraints: 

Simulation integrated; 

cross-proved 

Function 

Prioritize: All 

LRU arbiter (module) 

Cacheline (SV bind) 

Tag flow path (SV bind) 

Data flow path (SV bind) 

4x interfaces (SV bind) 

End-to-End Checkers: 

Tag flow: 

- Tag state 

- Eviction address/state 

- Replacement policy 

Data flow: 

- Write/read data integrity 

- Eviction data 

Total 496 properties 

76% proven 

24% bounded 

76 bugs 

29 bugs are simula-

tion resistant 

Complexity 

Decompose:  

Tag and Data flow paths 

were decomposed  

Abstraction Techniques: 

Reset abstractions 

Cut-points 

Symbolic sets for symmetric 

data in tag and data memories 

Data coloring for data con-

sistency 

Formal Coverage: 

Functional coverage 

Assertion precondi-

tion coverage 

Checkers reach re-

quired proof depth  

 
Table 5: Summary of E2E Checking Methodology for a NOC Configurable Cache Controller 

VI. SUMMARY 

We have introduced the end-to-end checking methodology to raise the level of formal verification to perform block-

level formal signoff. We have summarized the creation of an end-to-end formal testbench. It is a 3-step process con-

sisting of formal testbench planning, implementation, and closure. To help project teams understand the work better, 

we covered two essential tasks in-depth: end-to-end checkers and abstraction techniques. For end-to-end checkers, 

we explained their benefits and their components. For abstraction techniques, we summarized some techniques sup-

ported by formal tools and some advanced modeling approaches. Finally, we illustrated the end-to-end checking 

methodology with three examples detailing the tasks and the results in the 3-step process. From these examples, 

managers can see that for an SoC design with approximately 50 blocks, if the project plans to deploy formal signoff 

on a quarter of the blocks, it will require 3 to 4 formal experts plus 20 or more junior to senior formal engineers. 
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