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Abstract - The use of formal verification has been steadily increasing thanks to the widespread adoption of automatic
formal, formal applications and assertion-based formal checking. However, to continue finding bugs earlier in the design
process, we must advance formal verification beyond focusing on a handful of localized functionalities toward completely
verifying all block-level design behaviors. An end-to-end formal test bench methodology allows the RTL designer and
formal verification engineer to work parallelly to finish design and verification on all functionality formally signed-off as
bug-free. Given that today's formal tools cannot close the end-to-end checkers required to verify complex IP blocks, we
must rely on methodology to tackle design complexity in a way that allows the formal tool to converge in project time.
This paper aims to demystify the end-to-end formal test bench methodology and discusses how we can reduce the com-
plexity of the design with functional decomposition and abstraction techniques.

. INTRODUCTION

Many companies have used formal verification to verify complex SOCs [1] and safety-critical designs [2]. In addi-
tion, formal verification has been used for assurance [2], bug hunting [3], and coverage closure [6][7]. As companies
have adopted formal verification, we can classify the usage into five maturity levels, as depicted in Figure 1.

Shift Left; Formal Bug Hunting Exhaustive: Formal Sign-Off

Auto Checks
X-propagation
Unreachability

RTL Assertions Level 5

Arbiter

FIFO Sys;em grch

Handshake ien-
Connectivity Bus Protocol Level 4 & ﬁ
Register checks B

X ock System Deadlock

Clock gating ) 0 Cache Coherence
Sequential LEC Level 3 LT Sig”'off Sys-Level Security

Load/Store Unit
Warp Sequencer
Cache Controller

Multi-Lane Aligner
MAC Rx Block

Formal Apps

Figure 1: Formal verification usage levels

Level 1: Automatic Formal such as auto-checking, formal linting, dead-code identification, etc

Level 2: Formal Applications such as connectivity checking, register checking, X checking, etc

Level 3: Assertion-based Formal Verification such as interface and bus assertions, embedded assertions, etc
Level 4: Block-level Signoff that thoroughly verifies all block-level design behaviors.

Level 5: System Architectural-level Verification focusing on specific high-level design requirements
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Level 1 to 3 has been supported well by EDA vendors. Hence, we are not going to cover them. Level 4 introduces
end-to-end checking methodology, which means the DUT is exhaustively verified, and block-level simulation is
completely replaced for that DUT. Once the end-to-end checkers have captured the design specification, the DUT is
signed off with formal verification. Level 5 formal aims to prove that the system architecture is correct for specific
requirements such as cache coherence or that the system is deadlock-free. System architectural-level verification
requires significant expertise, effort, and decomposition of the targeted problem.

This paper focuses on Level 4 block-level signoff as it is a unique reliance usage of formal verification. It provides a
good return on investment because you can:



o find more bugs and verify the block while the designer is coding the RTL (early deployment),
o replace simulation entirely and do a formal signoff of the block (exhaustiveness),
o reuse the formal testbench with updated RTL to quickly confirm a fix or find new issues (reusability).

Unfortunately, it is still not commonly used in today's industry because few companies have invested in it, few man-
agers have taken the risk of deploying it, and few engineers know how to use it effectively. This paper tries to ad-
dress these knowledge gaps by explaining how an end-to-end formal checking methodology can achieve block-level
signoff. In addition, we will discuss the formal testbench planning, implementation, and signoff process. Finally, we
will explain how to address the design complexity issue with functional decomposition and abstraction techniques.

Il. END-TO-END CHECKING METHODOLOGY

The concept of end-to-end formal checking was first introduced in the tutorial of FMCAD [7]. Although it had ex-
plained the concept clearly, it did not describe much about the planning and deployment process. To successfully
replace block-level simulation with formal signoff, we need to start the end-to-end formal testbench development
early in the design cycle. Therefore, commitment from management in the process is essential. Organization-wise,
management will acquire formal expertise, allocate formal engineers to partner with RTL designers, and plan for
compute resources. Table 1 summarizes the three phases of the end-to-end checking methodology. They are the for-
mal test planning phase, implementation phase, and closure phase.

Task Planning Implementation Closure

Acquire formal Allocate formal Plan extra compute and
Management . .

expertise engineer resources vendor resources
Block Identify and Evaluate Capture Interfaces Validate Constraints
Function Describe and Prioritize | End-to-End Checkers Conclusiveness
Complexity Decompose and Map Abstraction Techniques | Formal Coverage

Table 1: Formal Planning, Implementation, and Closure of End-to-End Checking Methodology
A.  Formal test planning

Formal test planning was first described years ago in [8] and again in [6]. It is the most critical step in the End-to-
End checking methodology. The formal test planning process consists of:

¢ identify the right blocks to apply formal and evaluate the design metrics to determine the effort,

e describe the list of test requirements w.r.t. the design specification and prioritize them,

e decompose complex test requirements into manageable ones and map them to the design

An excellent formal test plan leads the subsequent testbench execution on a path that is predictable and trackable.
Thus, it avoids potential problems and delivers the best return on investment for the project. However, the planning
processes require past formal signoff experience and intimate design knowledge. Hence, it is best to be done by an
experienced formal expert in conjunction with the design team.

Sometimes, the block we want to verify is too complex for formal verification or does not align with the test require-
ments. In these cases, we will need to take a divide and conquer approach to partition the block explicitly into sub-
modules or virtually with SystemVerilog bind statements. Sub-modules can be created with well-defined functional-
ity and interfaces when design teams consider formal complexity early in the design cycle. Then, these sub-modules
can be verified cleanly and concurrently. A good example is to have arbitration logic in a submodule. Another one is
the IDMA, DMAC, and ODMA submodules in the CNN DMA Controller [4]. On the other hand, System Verilog
bind statements can help align the design corresponding to the test requirements. For example, a bind statement can
be used for each interface of the design. Furthermore, additional bind statements can focus on the different data flow
of the design and data integrity at the data transport parts of the design. Using these bind statements, we have a pow-
erful way to partition the design corresponding to the test requirements not limited by the design hierarchy.



Test requirement mapping is another common problem. For example, the design specification or the test requirement
may discuss some high-level behaviors, such as data starving, back-pressure, or head-of-line blocking. As these con-
cepts and conditions are not generally captured explicitly in the RTL code. Extra monitoring models will need to be
written to detect these concerned cases.

B. Formal Testbench Implementation

It is the implementation phase of the formal test plan and requires careful partnering of formal engineers with design
team members. Verification tasks should be assigned and tracked at this phase. It involves:

e capturing the interface properties as assertions or constraints,

¢ implementing end-to-end checkers to verify the behavior of the design and,

¢ planning and preparing abstraction models when necessary.

Interface properties used as output assertions for one block will be used as input constraints for another. Therefore, it
is helpful to make sure they can be switched easily. End-to-end checkers serve as a reference model of the design-
under-test (DUT). When we engage with design teams early in the process, the end-to-end checker is developed
side-by-side with the RTL code. It references the same design specification as the RTL design. Hence, it can provide
early feedback on the correctness of the design, ensure its quality, and evolve with the design changes. Abstraction
models are techniques to help formal verification short-circuit the depth and reduce the state space of a design. They
will not be needed until the formal testbench environment is up and running. However, it will be late if some proper-
ties fail to converge and abstraction models are needed late in the schedule. In addition, some complex abstraction
models will take time to develop. Therefore, it is much better to plan for them, especially for data integrity-related
abstraction models. To smoothly execute the formal testbench implementation phase, skillsets such as writing effi-
cient formal test benches, understanding essential formal tool features, capabilities, and limitations, and applying
formal techniques to manage design complexity are crucial.

Similar to other verification processes, a formal testbench implementation process is very iterative. For example, it
is common for an end-to-end checker to fail in shadow depth initially. However, during the debugging process, it
enables a deeper understanding of the design, leading to a refinement of the checker and assumptions. This refine-
ment process ensures the formal tool explores all corner-case scenarios from easy to complex until the end-to-end
checker is validated.

C. Formal Closure

This is the final closure phase that determines if the formal testbench has reached signoff status. To ensure the for-
mal testbench has reached signoff quality, one must

o validate the constraints to make sure they are not over-constraining,

e prove, debug, fix and conclude all the end-to-end checkers,

e examine and determine that the formal coverage is sufficient

However, before looking at the qualitative measurements, one critical question (to ask one final time) is: have we
verified all the dead-on-arrival, worrying, and corner cases. Most design specifications describe the expected behav-
ior of the design; seldom will they talk about the error and unexpected scenarios. One job of the formal engineers is
to think of the potentially distressing situations, ask questions, capture them and verify that they will or will not hap-
pen. A practical approach is to examine the bugs found by other verification approaches such as simulation and
emulation. Although the bugs may have already been fixed, have they been verified thoroughly against all scenar-
ios? For a known bug, formal verification is good at finding all possible triggers and ensuring that the fix will cover
all possible scenarios.

The most practical way to verify constraints and assumptions is to integrate them into the simulation regression. We
want to ensure there is no unintentional over-constraint. However, observing simulation coverage of these properties
is essential. We need to make sure they are being exercised by simulation. Similar to simulation coverage, formal
coverage can be measured using line, branch, state, and transition coverages. Cone-of-influence (COI) coverage can
be used early in the implementation phase to ensure sufficient end-to-end checkers cover the whole design. Then, at
the closure phase, formal core coverage can measure how much formal verification has exercised the design. To en-
sure the design specifications are verified, end-to-end checkers should be proven or have reached the Required Proof
Depth (RPD)[9]. The RPD depends on the micro-architecture of the design. Therefore, it is calculated using several



factors, including the latency of the design, the reached interesting corner-cases, the fired counter-examples, etc. Fi-
nally, there may still be formal failures (counter-examples) that are outside the design specification. We can docu-
ment them literally as unsupported scenarios. However, the best way to capture them is to specify the constraints or
assumptions required to make them conclusive.

I1. CREATION OF END-TO-END CHECKERS
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Figure 2: The structure of an end-to-end checker

In order to sign off a block with formal verification, the Level 3 formal bug hunt approach is insufficient. The lo-
cally embedded assertions rely on the correctness of the RTL code to catch corner-case bugs. For instance, a FIFO
will need to store data before it overflows. Hence, if formal verification is to be relied upon as a primary verification
methodology for a design, end-to-end checkers must be used to capture the functionality of the design. When com-
pared to low-level assertions, end-to-end checkers are much more comprehensive as they:

e Provide clear value to the project team because they map directly to the functional specification,

¢ Identify incomplete or ambiguous specifications early in the design cycle,

e Provide the highest return on investment as it can identify deep or unaware corner case issues.

An end-to-end checker uses RTL code to describe a reference model for the required behavior of the block. We
roughly divide it into four components. As shown in Figure 2, it consists of input handshake, output handshake, con-
trol path, and data path. For each interface of the design block, the input handshake captures the interface properties
and uses them as constraints. In addition, it extracts the control and data signals for the reference model. The output
handshake makes sure that the output signals follow the defined protocols. It also extracts the control and data sig-
nals to check their values by the reference model. Not surprisingly, proving the end-to-end checkers is usually com-
putationally much more complex than local checkers. It is one of the reasons that we recommend separating the con-
trol and the datapath logic. It allows us to focus on the control logic first. As we will describe in the next section,
various abstraction techniques can be used differently on the control and the datapath logic. The control logic is nor-
mally modeled as finite state machines in the RTL code to be efficient and compact. However, complex FSMs with
many input signals and fan-in logic may become bottlenecks for formal verification. Since the formal testbench is
not going to be synthesized, we can code the control logic as multiple FSMs, or sequences that can be enabled based
on the operational functionality of the design.

Finally, to give some examples, in the multi-cast crossbar design [6] and the CNN DMA controller design [4], they
consist of the following end-to-end checkers:
e  Control path end-to-end checkers:
o Arbitration checkers (a combination of two checkers) for the arbitration scheme
Consistency checkers to ensure no spurious grant is given to a client
Forward progress checkers to verify that a request will reach the target output within a finite time
Predict and compare checkers for address correctness of the DMA load/store operations
Performance checkers to ensure read/store operations are performed in each cycle when the condi-
tions are met.
e Data path end-to-end checkers:
o A data integrity checker to ensure correct transfer from the client to the desired target i.e. data is
not corrupted, duplicated, reordered, or dropped.
o Data integrity checkers to ensure correct transfer 1) from read data input port to DMA buffer, and
2) from DMA buffer to store output port.

O O O O



To verify data transportation logic, we use the Wolper coloring technique [6]. It is a practical approach that doesn't
require any data stored in the checker logic for data integrity checking. When the input is constrained to follow the
Wolper coloring sequence, as in figure 4, we verify if the same sequence is received at the output. Once set up, for-
mal verification will find ways to break the sequence. However, if proved, it confirms that the data is correctly trans-
ferred; it is not corrupted, duplicated, reordered, or dropped.

The rules for generating or verifying Wolper sequence are:
1. Ifthe first 1 is seen, next input/output should be 1

wolper_1st_1 seen_next_1: (first_one && !second_one && input_valid) |-> (colored_input == 1'b1)
2. Iftwo 1’s are seen, only 0’s should be seen

wolper_2nd_1_seen_forever_0: (second_one && input_valid) |-> (colored_input == 1'b0)

Figure 4: The rules of the Wolper sequence

V. ADOPTION OF ABSTRACTION TECHNIQUES

If we want to verify a block's end-to-end behavior, design complexity is one of the success factors [3] we need to
conquer. Although tool vendors have been working hard to improve the tool capability, adopting efficient abstrac-
tion techniques is still the most efficient way to help formal verification deliver conclusive results and coverage clo-
sure. The process includes
o ldentify potential areas of design complexity
o Formulate abstraction techniques
o Applying design domain knowledge to determine suitable abstractions
o Leverage assume/guarantee reasoning and symmetries in the design
o Reuse abstraction models for common elements such as FIFOs, memories, etc
o Deploy abstraction models and evaluate the efficacy

Formal verification tools have been advanced sufficiently to identify potential areas of design complexity. By exam-
ining the core-of-influence (COI), we can find the design elements that have caused the formal engines to stall. A set
of commonly used abstraction techniques and models are summarized in Table 2. These abstraction techniques and
manually crafted abstraction models can reduce the required proof depths and the state space of a design to make
formal runs less computationally expensive.

Formal Efficiency

Reduce COI, reduce state space per
run/case

Increase flexibility but controlled
with constraints

Reduce access depth

Reduce the length of counting

Abstraction Technique
Case splitting

Design Complexity

Multiple runs with different cases re-
ducing design complexity per run/case
Eliminate logic before cut-
points/blackbox; add constraints
Reset abstraction n.a.

Counter abstraction n.a.

Cut-point/ Black box

Symmetric data elements

[7]

Eliminate multiple dimensional data
elements; add single dimension ab-
straction model

Reduce COIl with symmetry

FIFO [7]

Eliminate logic before cut-points; add
abstraction model

Reduce the depth of the FIFO

Data independence [7][6]

Eliminate all storage elements; add
Wolper FSMs

Reduce COI with pattern

Memory abstraction [7]

Represent one location instead of the
full size of the memory

Reduce COI with symmetry

Tagging [9]

Represent one tag instead of the com-
plete linked list

Reduce COI

Table 2: Abstraction Techniques and Models

Case splitting decomposes a complex design into multiple formal runs. Each run is constrained to focus on a particu-
lar configuration or case. As a result, it reduces the cone-of-influence (COI) and the state space of each formal run.



Abstraction using cut-points and black-box are similar. Both approaches remove the complex logic from the COI.
Thus, these cut-points and the outputs of the black box become control points for formal verification. We can add
appropriate constraints. The goal is to reduce complexity and increase flexibility for formal verification. Resettable
registers and counters are common elements in a design. However, it may take a long sequence of activities to load
an interesting value into a critical register or counter. Reset and counter abstraction short-circuit the process and ena-
ble formal to control these elements more directly. These approaches have been supported by various tool vendors
effectively.

On the other hand, more advanced abstraction techniques will require a good understanding of the design and mod-
eling. For example, for data transport designs such as memory controllers, cache controllers, or DMA controllers,
there are a lot of symmetric data elements in the design. To reduce complexity, we can write checkers to verify one
symbolic address of the data element only. Thus, it will reduce complexity from SIZE*WIDTH for all data elements
to 1*WIDTH for the symbolic address. Table 3 below shows how an abstraction model is different from the original
RTL. When RTL reads the memory location corresponding to the symbolic address, the value last written is re-
turned. At the same time, end-to-end checkers will check data integrity corresponding to the symbolic address only.

RTL model Abstraction model

element_type [SIZE-1:0] element; element_type abs_element;

element [addr] = wr_data; if (addr == sym_addr) abs_element = wr_data;
rd_data = element [addr]; if (addr == sym_addr) rd_data = abs_element;

Table 3: The abstraction model for symmetric data elements

Deep FIFOs are challenging for formal verification in general. An easy way to reduce the design complexity of a
FIFO is to minimize the DEPTH parameter. However, this approach cuts the verification state-space forcefully. A
more mature approach is to enable formal verification to explore and set the FIFO depth as needed. As illustrated in
Figure 5, a symbolic depth is defined and used to determine the FIFO full and back-pressure conditions. The assume
property ensures that the sym_depth, once set by formal, remains constant throughout the process. The sym-depth
can be as small as 2 or a more significant value if the number of entities is essential for formal coverage. Then, the
FIFO can be filled quickly, and the subsequent back-pressure logic can be verified.

wire [Sclog2(DEPTH)-1:0] sym_depth;

assume property: (sym_depth > 1 && sym_depth < DEPTH) ##1 Sstable(sym_depth)
abstraction model: replace DEPTH with sym_depth
assert property: pop |-> (data_out == mem|[rd_ptr])

Figure 5: The abstraction model of a FIFO

When data is transported in sequence without modification, we can use the Wolper coloring technique [6], illus-
trated earlier in Figure 4. It verifies the data integrity of the RTL structure. Furthermore, this approach can be com-
bined with the other abstraction technique, such as the symbolic depth, to verify the end-to-end integrity of the FIFO
and its memory. On the other hand, when data is stored and used later, we can represent the memory as one sym-
bolic address instead of the complete array. It leverages the same approach as the abstraction model for symmetric
data elements in Table 3. As illustrated in Figure 6, there is a symbolic address and one memory storage. Data is
stored and retrieved from the single memory location when the address matches the symbolic address. With formal
verification, it will explore all possible values for the symbolic address.

RTL memory: reg [WIDTH-1:0] mem [DEPTH-1:0];

abstraction memory: reg [WIDTH-1:0] mem;

assume property: (sym_addr < DEPTH) ##1 Sstable(sym_addr)
abstraction write: if (wr && (wr_addr == sym_addr)) mem <= wr_data;
abstraction read: if (rd && (rd_addr == sym_addr)) rd_data = mem;

Figure 6: The abstraction model of a memory



In design with a scheduler or allocator, incoming requests are stored as tags. As tags can be created and freed out of
order, they are managed as a linked list. Therefore, instead of handling a tag manager with 1000s of tags, we replace
it with an abstraction model that contains only one symbolic tag. As shown in Figure 7, the assume property is used
to ensure the symbolic tag value remains constant throughout the formal run. Then, a simple state machine, with
IDLE and STAG states [9], is used to represent the allocation and freeing of the tag. In addition, assume and assert
properties are added to the output and input ports of the tag manager:

- Assume property: ensure when the sym_tag has been stored, it cannot be granted again.

- Assert property: ensure when the sym_tag has been freed, it cannot be returned again.

assume property: ##1 Sstable(sym_tag)

IDLE - STAG transition: grant && (grant_tag == sym_tag) — stored sym_tag
STAG - IDLE transition: return && (return_tag == sym_tag) — freed sym_tag

output assume property: (state == STAG) |-> (lempty)
output assume property: (state == STAG && grant) |-> (grant_tag != sym_tag)

input assert property: (state == IDLE && return) |-> (return_tag != sym_tag)
input assert property: (state == IDLE) |-> “sym_tag is eventually returned”

Figure 7: The abstraction model of a tag

V. RESULTS

Many companies have successfully deployed block-level formal verification signoff with the end-to-end checking
methodology. Besides finding bugs early in the design cycle, they have also experienced additional benefits. For
example, with the end-to-end checking formal testbench already in place, some projects added late-stage features
and confidently debugged them. More importantly, no bug was found in the blocks afterward in integrated simula-
tion regression, system-level simulation, and the designs were taped out successfully.

A. Parameterized multi-cast crossbar design [6]

It was the design used in the "Break the Testbench” challenge at DAC 2015. Attendees were invited to insert
functional bugs in the design and watch the bugs being caught by the end-to-end checking formal testbench.

Task Planning Implementation Closure
Manage- Formal expert (6+ yr) Formal engineer (2+ yr) 8-core, 48GB memory
ment (20% time) Schedule: 1.5 months server

Capture Interfaces:

Divide and conquer: Validate Constraints:

Block n.a. Client |.nputs/outputs Simulation integrated
Target inputs/outputs
Prioritize: End-to-End Checkers:
Function Data correctness Target arbitration RTL Bugs:
Arbitration workload Data integrity (Wolper) 73 known bugs found
Sequences Forward progress checks
Abstraction Techniques: .
) . . Formal Coverage:
. Decompose: Use symmetric elements; .
Complexity . . : Line: 100%
n.a. symbolic variable on client

. Condition: 100%
and target pair

Table 3: Summary of E2E Checking Methodology for a parameterized multi-cast crossbar design



The complete end-to-end checking methodology for this block is summarized in Table 3. 73 RTL bugs were inserted
during the process, and all of them were exposed by one or more checkers. It was an excellent exercise to demon-
strate that end-to-end checking is a comprehensive methodology. Moreover, it can replace simulation regression to
weed out bugs exhaustively very early in the design cycle. For this design, we had parameterized it to have 8 clients
and 8 targets. In a simulation testbench, we would have written checkers for 64 different pairs of clients and targets.
However, in the formal testbench, we leveraged symbolic variables to select a client/target and implemented all of
the checkers for the symbolic client and target pair. Then, formal verification can explore all possible values for the
symbolic variables while ensuring that none of the checkers will fail.

B. GPU Level 2 Cache Request Coalescer (LRC) unit [5]

The design is GPU Level 2 Cache Request Coalescer (LRC) unit. There are 6 virtual channels (VCs) that are pro-
cessed in parallel in the design. Flow control from REQ to L2 is credit-based, with credits issued by L2 on a per-VC
basis. In addition, we developed a special end-to-end checker to detect circular dependencies in the stall conditions
of forward progress checkers. This circular dependency checker exhaustively traverses all entries in the dependency
table and detects all possible loops. Symbolic variables were used to enable formal verification to select all values
for the initial stalled block and the next stalling block. The complete end-to-end checking methodology for this
block is summarized in Table 4.

Task Planning Implementation Closure
Manage- Formal expert (9+ yr) Formal engineer (1+ yr) 16-core,
ment (20% time) Schedule: 6.5 months 256GB memory server
Divide and conauer: Capture Interfaces: Validate Constraints:
Block i quer: Xbar Interface Simulation integrated,;
Submodules: Req, Rsp .
L2 interface cross-proved
End-to-End Checkers:
Prioritize: All Request coalescing RTL Bugs:
Function IP block, all checks are Data integrity 57 known bugs found
important Response replay 7 corner-case bugs
Forward progress
Decompose: . . )
ILC (submodule) black- Abstraction Technlques.
b Counter abstraction .
0X Wolper’s method for Formal Coverage:
Complexity | Design Shrinking (FIFO per's. Line: 100%
data consistency S
and CAM) . Condition: 100%
. Symbolic address/CAM
Partition VVC path to re- ID modelin
duce latency g

Table 4: Summary of E2E Checking Methodology for a GPU Level 2 Cache Request Coalescer unit

C. Network-on-Chip (NOC) Configurable Cache Controller

The cache controller is one kind of design that we have verified numerous times in the past years. A recent one is a
configurable cache controller in a complex NOC design. There are many configurations and modes of operation that
simulation alone would be insufficient to verify thoroughly. The complete end-to-end checking methodology is sum-
marized in Table 5 below. To handle the complexity of this design, we developed two separated formal testbenches:
1. Tag flow: smaller latency, abstraction memories, operates on all ways in the set
2. Data flow: long latency, abstraction memories, focuses on transaction failures in some
In addition, we maintained a clean and well-understood interface between these two testbenches. The properties on
the tag/data flow interface were cross-proved to ensure completeness.



Task Planning Implementation Closure
Manage- Formal expert (10+ yr, Sr. Formal engineer (50% 16-core, 64GB server
et g 2506 time) time) 16-core, 512GB
Schedule: 5-6 months 2x Formal engineer (2+ yr) server
Capture Interfaces:
Divide and c.onqL'Jer: Cmc_i mte_rface vValidate Constraints:
Block Subquules. arbiters, Register mter-face Simulation integrated;
cacheline controller, DDR | Data SRAM interface cross-proved ’
controller, FIFOs DDR RAM interface P
Tag <> data interface
End-to-End Checkers:
Prioritize: All Tag flow: Total 496 properties
LRU arbiter (module) - Tag state 76% proven
Function Cacheline (SV bind) - Eviction address/state 24% bounded
Tag flow path (SV bind) - Replacement policy 76 bugs
Data flow path (SV bind) Data flow: 29 bugs are simula-
4x interfaces (SV bind) - Write/read data integrity tion resistant
- Eviction data
Abstraction Techniques: .
. Formal Coverage:
Reset abstractions -
. . Functional coverage
Decompose: Cut-points . -
. - . Assertion precondi-
Complexity | Tag and Data flow paths Symbolic sets for symmetric tion coverage
were decomposed data in tag and data memories g
. Checkers reach re-
Data coloring for data con- -
. quired proof depth
sistency

Table 5: Summary of E2E Checking Methodology for a NOC Configurable Cache Controller

VI. SUMMARY

We have introduced the end-to-end checking methodology to raise the level of formal verification to perform block-
level formal signoff. We have summarized the creation of an end-to-end formal testbench. It is a 3-step process con-
sisting of formal testbench planning, implementation, and closure. To help project teams understand the work better,
we covered two essential tasks in-depth: end-to-end checkers and abstraction techniques. For end-to-end checkers,
we explained their benefits and their components. For abstraction techniques, we summarized some techniques sup-
ported by formal tools and some advanced modeling approaches. Finally, we illustrated the end-to-end checking
methodology with three examples detailing the tasks and the results in the 3-step process. From these examples,
managers can see that for an SoC design with approximately 50 blocks, if the project plans to deploy formal signoff
on a quarter of the blocks, it will require 3 to 4 formal experts plus 20 or more junior to senior formal engineers.
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