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The High Cost of Developing Test Content
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Design:
32%

Verification:
Other  13%

Verification:
Content Development

30%

Project Resource Deployment

Verification:
Debug

25%

Complex tests hard 
to get right

Test development drives 
debug

Source: Wilson Research 2020

Largest Functional Verification Challenge



A Look At RISC-V
• Open Instruction Set Architecture (ISA) creating a discontinuity in the 

market
• Appears to be gaining significant traction in multiple applications
• Significant verification challenges
• Arm spends $150M per year on 1015 verification cycles per core
• Hard for RISC-V development group to achieve this same quality
• Lots of applications expands verification requirements
• Requires automation, reuse and other new thinking
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Test Suite Synthesis… Analogous to Logic Synthesis
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Breker Background: Test Suite Synthesis for RISC-V Cores & SoCs

• Breker is a key, longstanding part of the verification ecosystem 
for processors and SoCs based on x86 and Arm architectures 

• Breker has become part of the verification ecosystem for 
processors and SoCs based on RISC-V architectures
• Working with multiple RISC-V developers and users/integrators

• RISC-V has room to grow if we solve the verification barrier
• We are experienced in x86 and Arm verification, allowing us to 

share this experience with RISC-V teams through automated tests
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The Breker SystemVIP Library
• Core Integrity FastApps
• RISC-V System Integrity TrekApp
• ARM System Integrity TrekApp
• Cache Coherency TrekApp 2.0
• Firmware-First TrekApp
• Power Management TrekApp
• Security TrekApp 
• Networking TrekApp

Firmware



Breker SystemVIP Library
SoC SystemVIP Library

• The RISC-V Core TrekApp provides fast, pre-packaged 
tests for RISC-V Core and SoC integrity issues

• The Coherency TrekApp verifies cache and system-level 
coherency in a multiprocessor SoC

• The End-to-end IP TrekApp IP test sets ported from 
UVM to SoC

• The Power Management TrekApp automates power 
domain switching verification 

• The Security TrekApp automates testing of hardware 
access rules for HRoT fabrics

• The Networking & Interface TrekApp automates packet 
generation, CXL, UCIe interface tests



Constrained Random vs AI Planning Algorithm Synthesis
Constrained Random Generation

UVM SV & other PSS tools
AI Planning Algorithm

Breker Test Suite Synthesis
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RISC-V Verification Challenges
• Processors are hard to verify

• Consider Arm and Intel verification investments 

• Automation is the answer
• Number of diversified test generators, etc.

• RISC-V special requirements
• Custom instruction verification
• Compliance assurance
• Broad range of architectures

• Different processors have different needs
• Embedded cores
• Processor clusters
• Application processors
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Different Challenges for Core vs SoC Verification
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Random Instructions Do instructions yield correct results
Register/Register Hazards Pipeline perturbations dues to register conflicts
Load/Store Integrity Memory conflict patterns
Conditionals and Branches Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from ISR
Asynchronous Interrupts Pipeline perturbations from asynchronous PC change
Privilege Level Switching Context switching
Core Security Register and Memory protection by privilege level
Core Paging/MMU Memory virtualization and TLB operation
Sleep/Wakeup State retention across WFI
Voltage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops

System Coherency Cover all cache transitions, evictions, snoops
System Paging/IOMMU System memory virtualization
System Security Register and Memory protection across system
Power Management System wide sleep/wakeup and voltage/freq scaling
Packet Generation Generating networking packets for I/O testing
Interface Testing Analyzing coherent interfaces including CXL & UCIe
Random Memory Tests Test Cores/Fabrics/Memory controllers across DDR, 

OCRAM, FLASH etc
Random Register Tests Read/write test to all uncore registers
System Interrupts Randomized interrupts through CLINT 
Multi-core Execution Concurrent operations on fabric and memory
Memory Ordering For weakly order memory protocols
Atomic Operation Across all memory types

RISC-V Core Verification Challenges
RISC-V SoC Verification Challenges 



RISC-V Verification & Validation Tasks
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Single Source of Truth for all stages of Verification & Validation
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SVIPs for Core Integrity
• Register Hazards
• Load/Store
• Core Cache Coherency
• Core Interrupts
• …

SVIPs for IP Integrity
• Mem2Mem (dma)
• IO Offload (PCIE/Eth)
• WQ Servicing 
• …

SVIPs for SoC Integrity
• SoC Cache Coherency
• Memory Ordering
• Power Management
• System Interrupts 
• …

SVIPs for FW Integrity
• Mem2Mem (dma)
• IO Offload (PCIE/Eth)
• WQ Servicing 
• …



Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP
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Core-Integrity Challenges
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Random Instructions Do instructions yield correct results
Register/Register Hazards Pipeline perturbations dues to register conflicts
Load/Store Integrity Memory conflict patterns
Conditionals and Branches Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from ISR
Asynchronous Interrupts Pipeline perturbations from asynchronous PC change
Privilege Level Switching Context switching
Core Security Register and Memory protection by privilege level
Core Paging/MMU Memory virtualization and TLB operation
Sleep/Wakeup State retention across WFI
Voltage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops

Breker 
RISC-V Core-Integrity

FASTApps



Crossing RISC-V Core Verification Components
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RISC-V Core Testbench Integration 
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RV64 Core Instruction Generation 

Random register instructions



Instruction Coverage Analysis

27/103 reachable 
opcode have been 

exercised

Atomics, loads and 
stores not reachable 
in register only test



RV64 Core Load/Store 

Locality of write addrs



Example Address Allocation Patterns 
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Application to Unit Bench and Sub-System Bench
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NOC/Cache Unit Testbench

NOC/L2

VIP VIP VIP
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RV64 Core Exception Testing 
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Generates for example, 
asm("UNIMP");

Check exception counts



Page Based Virtual Memory Tests
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RV64 Core Page Based MMU Tests 
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Swap MMU PTE’s and 
Check memory access



Core-Integrity: Single Core, 4 Threads

• Tests utilizes processor’s available resources/software threads
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Modular, Configurable and Extendable Building Blocks
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Testing a Custom Instruction
• RISC-V ISA custom instructions pose a 

particularly difficult verification challenge
• Custom instructions need to be tested with the 

processor tests, not as an afterthought
• Breker solution allows custom instruction tests 

to be easily added into test graph
• Breker synthesis combines these tests with the 

app to ensure full custom processor testing 

© Breker Verification Systems, Inc.  All rights reserved.                                                             Breker Systems Confidential

Additional
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Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP
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SoC-Integrity Challenges
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Breker 
RISC-V SoC-Integrity

SystemVIP

Random Memory Tests Test Cores/Fabrics/Memory controllers across DDR, 
OCRAM, FLASH etc

Random Register Tests Read/write test to all uncore registers
System Interrupts Randomized interrupts through CLINT 
Multi-core execution Concurrent operations on fabric and memory
Memory ordering For weakly order memory protocols
Atomic operation Across all memory types
System Coherency Cover all cache transitions, evictions, snoops
System Paging/IOMMU System memory virtualization
System Security Register and Memory protection across system
Power Management System wide sleep/wakeup and voltage/freq scaling

• End-to-End use cases
• Early Firmware Testing
• Performance-Power Profiling



RISC-V SoC Integrity TrekApp
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RISC-V SoC Testbench Integration 
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Multi-Agent Scheduling Plans: Overview
• True Sharing within scenario
• False Sharing across scenarios 
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N Transition Scenarios

Concurrent Scenario Test Case

N Transition Sequences

Schedule Memory
Interleave & Pack
Resolve Dependencies



RV64 MultiCore MoesiStates
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Planned Cache State
Transitions



Atomics Testing 
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Check result is aggregate of 
synchronized atomic 
operations 



RISC-V SoC Memory Ordering: Dekker Algorithm
• Assume initial state A=0 , B=0

• The Dekker Algorithm States
core 0: ST A, 1; MEM_BARRIER; LD B
core 1: ST B, 1; MEM_BARRIER; LD A
error iff ( A == 0 && B == 0 )

• This is a test for a weakly ordered memory system
• Such a system must preserve the property that a LD may not reorder ahead of 

a previous ST from the same agent
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Dekker Memory Ordering
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Check ordering across 
synchronized Dekker 
scenarios



MultiCore MMU Tests 
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All cores Swap MMU 
PTE’s and check 
memory access



False-Share Memory Stress Tests 
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Byte 0Byte 1Byte 2Byte 3Byte 4Byte 5

Allocate set of memory blocks

Random cores with 
synchronized start

Each core operates on a “slice” 
of memory

Each core has free 
running loop



High Coverage and Bug Hunting
Typical directed coherency coverage

… vs. Breker automated coherency tests

1. RISC-V spec misunderstanding between core vendor and user

2. Coherent Mesh Network (CMN) programming issues

3. Misconfigured ARM CMN  pin to enable coherent traffic

4. DDR model unable to handle AXI "wrap" transactions.

5. Common cache line access reveals deadlock

6. Custom instruction bugs discovered by stress tests

7. Results mismatch with ultrawide address strides

8. Incorrect exception for guest virtual address[63:38] = 0x1ffffff 

9. Bad mcause value for guest physical address[63:31] != 0x0

Recent examples of bugs discovered in real designs
SystemVIP Test Suite Synthesis Coverage Comparison



Bug Example: RISC-V spec mis-interpretation
• Design: Customer SoC using a third-party RISC-V processor
• Breker SystemVIP: RISC-V SoC & Coherency TrekApp
• Bug: Weakly ordered memory read-write mismatch on complex load-store
• Test: Combined RISC-V Load Store and Dekker Algorithm
• Reason: Misunderstanding in RISC-V Fence instruction execution
• Resolution: Bug agreed by processor vendor, processor core reissued
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The Dekker Algorithm States
core 0: ST A, 1; MEM_BARRIER; LD B
core 1: ST B, 1; MEM_BARRIER; LD A
error iff ( A == 0 && B == 0 )
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Concurrent Test Execution
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Core-Integrity Example:
Multi-Hart (x4), 3 Threads Each

Execution Profiling

Post-run analysis of design 
performance/power bottlenecksQuickly observe concurrent multi-test progress and DUT reaction

Advanced, Abstract Debug

Breker Concurrent Scheduling Stress Tests the Processor/SoC

Post-execution test length 
based on # clocks, 
# instructions, etc.



Basic Workload Test, 
Single Core

Basic Workload Test, 
Multicore

Mem Mem

Scalability – Going from One to Many Cores
Re-running your test(s) in multi-core designs



Basic Workload Test, 
Single Core

Basic Workload Test, 
Multicore

Mem Mem

Cache-line

Knobs: 
• Stride Size

Granularity:   Cache-line
Scalability –What Are the Additional “Knobs” For Multi-Core?

Exercising:  Evictions (L1, L2, LLC)



Basic Workload Test, 
Single Core

Basic Workload Test, 
Multicore

Mem Mem

Cache-line

Granularity: Word
Exercising:  False-Sharing

Scalability –What Are the Additional “Knobs” For MultiCore?



Thanks for Listening!
Any Questions?

www.brekersystems.com


