
RISC-V Core Verification:
A New Normal in Verification Techniques

Adnan Hamid, Breker Verification Systems
John Sotiropoulos, Breker Verification Systems

Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP

2

Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP

3

The High Cost of Developing Test Content

4

Design:
32%

Verification:
Other 13%

Verification:
Content Development

30%

Project Resource Deployment

Verification:
Debug

25%

Complex tests hard
to get right

Test development drives
debug

Source: Wilson Research 2020

Largest Functional Verification Challenge

A Look At RISC-V
• Open Instruction Set Architecture (ISA) creating a discontinuity in the

market
• Appears to be gaining significant traction in multiple applications
• Significant verification challenges
• Arm spends $150M per year on 1015 verification cycles per core
• Hard for RISC-V development group to achieve this same quality
• Lots of applications expands verification requirements
• Requires automation, reuse and other new thinking

5

Test Suite Synthesis… Analogous to Logic Synthesis

6

Describe intent

Generate
implementation

Map to
platform

Specify goals

Constrain

Synthesize

Optimize

Timing/Area
Constraints

Design Synthesis

3D Coverage
Closure

AI Planning
Algorithms

Synthesizable
VerificationOS

Breker
Core Technology

AI
 P

la
nn

in
g

Al
go

rit
hm

sConstrain

Synthesize

Optimize

Coverage
Constraints

Test Suite Synthesis
Scenario
Model

Specification
Model

SD
Sys

DC
PP

Ca
m

UVM SoC Silicon

DUT

St
im

ul
us

Ch
ec

ks

Coverage/Debug

Breker Background: Test Suite Synthesis for RISC-V Cores & SoCs

• Breker is a key, longstanding part of the verification ecosystem
for processors and SoCs based on x86 and Arm architectures

• Breker has become part of the verification ecosystem for
processors and SoCs based on RISC-V architectures
• Working with multiple RISC-V developers and users/integrators

• RISC-V has room to grow if we solve the verification barrier
• We are experienced in x86 and Arm verification, allowing us to

share this experience with RISC-V teams through automated tests
Stimulus

Debug & Profiling

Coverage Constraint

Synthesizable
VerificationOS

Test Suite
Synthesis

(Planning Algorithms)

Testbench

CPU IPMemory

IP IP

Fabric
Fabric

VIP

IP

VIP VIPTestbench

VIP

VIP

IP DUT

Abstract
SystemVIP

Library

Checks Coverage Debug

C SW + TLMUVM Sequences

In
fr

as
tr

uc
tu

re

The Breker SystemVIP Library
• Core Integrity FastApps
• RISC-V System Integrity TrekApp
• ARM System Integrity TrekApp
• Cache Coherency TrekApp 2.0
• Firmware-First TrekApp
• Power Management TrekApp
• Security TrekApp
• Networking TrekApp

Firmware

Breker SystemVIP Library
SoC SystemVIP Library

• The RISC-V Core TrekApp provides fast, pre-packaged
tests for RISC-V Core and SoC integrity issues

• The Coherency TrekApp verifies cache and system-level
coherency in a multiprocessor SoC

• The End-to-end IP TrekApp IP test sets ported from
UVM to SoC

• The Power Management TrekApp automates power
domain switching verification

• The Security TrekApp automates testing of hardware
access rules for HRoT fabrics

• The Networking & Interface TrekApp automates packet
generation, CXL, UCIe interface tests

Constrained Random vs AI Planning Algorithm Synthesis
Constrained Random Generation

UVM SV & other PSS tools
AI Planning Algorithm

Breker Test Suite Synthesis

time / cycles

st
at

es

time / cycles

st
at

es

Design black box, shotgun tests to search for key state
Low probability of finding complex bug

Black
Box

White
Box

Starts with key state and intelligently works backward through space
Deep sequential, optimized test discovers complex corner-cases

legal state

illegal state

target state

RISC-V Verification Challenges
• Processors are hard to verify

• Consider Arm and Intel verification investments

• Automation is the answer
• Number of diversified test generators, etc.

• RISC-V special requirements
• Custom instruction verification
• Compliance assurance
• Broad range of architectures

• Different processors have different needs
• Embedded cores
• Processor clusters
• Application processors

10

Co
m

pl
ex

ity

Up & running “Hello World”

ISA compliance

Micro-architecture functionality

System integration integrity

Performance/power profiling

Suggested RISC-V verification “stack”

Core operation integrity

SW Execution, OS Boot

Different Challenges for Core vs SoC Verification

11

Random Instructions Do instructions yield correct results
Register/Register Hazards Pipeline perturbations dues to register conflicts
Load/Store Integrity Memory conflict patterns
Conditionals and Branches Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from ISR
Asynchronous Interrupts Pipeline perturbations from asynchronous PC change
Privilege Level Switching Context switching
Core Security Register and Memory protection by privilege level
Core Paging/MMU Memory virtualization and TLB operation
Sleep/Wakeup State retention across WFI
Voltage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops

System Coherency Cover all cache transitions, evictions, snoops
System Paging/IOMMU System memory virtualization
System Security Register and Memory protection across system
Power Management System wide sleep/wakeup and voltage/freq scaling
Packet Generation Generating networking packets for I/O testing
Interface Testing Analyzing coherent interfaces including CXL & UCIe
Random Memory Tests Test Cores/Fabrics/Memory controllers across DDR,

OCRAM, FLASH etc
Random Register Tests Read/write test to all uncore registers
System Interrupts Randomized interrupts through CLINT
Multi-core Execution Concurrent operations on fabric and memory
Memory Ordering For weakly order memory protocols
Atomic Operation Across all memory types

RISC-V Core Verification Challenges
RISC-V SoC Verification Challenges

RISC-V Verification & Validation Tasks

CPU Cores

Testbench

VIP

VIP

IP DUT

Testbench

VIP

VIP

IP DUT

Uncore IPs

Firmware

First Instruction Completion

ISA compliance

Micro-architecture functionality

Interrupts/Paging/Memory Order

Core Integrity

Co
m

pl
ex

ity

IP Configuration

Concurrency Testing

End-to-End Use Cases

IP Integrity

Co
m

pl
ex

ity

Interrupts/Paging/Memory Order

Cache Coherency

Security

Power Management

Power/Performance Profiling

SoC Integrity

Co
m

pl
ex

ity

HW/Firmware Compatibility

Concurrency Testing

End-to-End Use Cases

Firmware Integrity

Co
m

pl
ex

ity

Single Source of Truth for all stages of Verification & Validation

13

SoC
Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

Hybrid Emulation
Environment

SoC
Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

Virtual Platform
Environment UVM Block

Environment

UART1

VIP

AES

Silicon /
Prototyping

Environment

Test Suite Synthesis

UVM Testbench

SoC
RTL

Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

Simulation
Acceleration

Performance ProfilingCoverage AnalysisHigh Level Debug

SVIPs for Core Integrity
• Register Hazards
• Load/Store
• Core Cache Coherency
• Core Interrupts
• …

SVIPs for IP Integrity
• Mem2Mem (dma)
• IO Offload (PCIE/Eth)
• WQ Servicing
• …

SVIPs for SoC Integrity
• SoC Cache Coherency
• Memory Ordering
• Power Management
• System Interrupts
• …

SVIPs for FW Integrity
• Mem2Mem (dma)
• IO Offload (PCIE/Eth)
• WQ Servicing
• …

Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP

14

Core-Integrity Challenges

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 15

Random Instructions Do instructions yield correct results
Register/Register Hazards Pipeline perturbations dues to register conflicts
Load/Store Integrity Memory conflict patterns
Conditionals and Branches Pipeline perturbations from synchronous PC change
Exceptions Jumping to and returning from ISR
Asynchronous Interrupts Pipeline perturbations from asynchronous PC change
Privilege Level Switching Context switching
Core Security Register and Memory protection by privilege level
Core Paging/MMU Memory virtualization and TLB operation
Sleep/Wakeup State retention across WFI
Voltage/Freq Scaling Operation at different clock ratios
Core Coherency Caches, evictions and snoops

Breker
RISC-V Core-Integrity

FASTApps

Crossing RISC-V Core Verification Components

16

Paging/
MMU

Access
Hazards
(PMP)

Physical
Addresstest.c

Privilege
Levels

Branch
Prediction

Load/Store
Instructions

Address
Hazards

Planning
Algorithm

Register
Hazards

Value
Hazards

Snoops

False Share
Cacheline

Cache Index
Hashes

Stride
Patterns

Exceptions/
Interrupts

Reg
Instructions

Test sets of different types

Tests crossed together in tree

Tree walked to produce
comprehensive test sets

RISC-V Core Testbench Integration

17

Tr ekS o C

L1

CPU

Memory
Model

Compiler

test.ctest.ctest.c

TrekBox

test.ctest.ctest.tbx

Snoop
VIP

Interrupt
VIP

Scenario
Model

Virtualized OS Services

RV64 Core Instruction Generation

Random register instructions

Instruction Coverage Analysis

27/103 reachable
opcode have been

exercised

Atomics, loads and
stores not reachable
in register only test

RV64 Core Load/Store

Locality of write addrs

Example Address Allocation Patterns

21

Application to Unit Bench and Sub-System Bench

22

NOC/Cache Unit Testbench

NOC/L2

VIP VIP VIP

VIPVIP

NOC/Coherency Sub-Subsystem
Testbench

RV64 Core Exception Testing

23

Generates for example,
asm("UNIMP");

Check exception counts

Page Based Virtual Memory Tests

24

RV64 Core Page Based MMU Tests

25

Swap MMU PTE’s and
Check memory access

Core-Integrity: Single Core, 4 Threads

• Tests utilizes processor’s available resources/software threads

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 26

Modular, Configurable and Extendable Building Blocks

27

System Coherency Top Graph

Max
Memsize

Specialized
Algorithm

Addl
Instructions

Example
Customizations

Specific Component
Characteristic

Special Coherency
Test Algorithm

Extra Processor
Instruction

Testing a Custom Instruction
• RISC-V ISA custom instructions pose a

particularly difficult verification challenge
• Custom instructions need to be tested with the

processor tests, not as an afterthought
• Breker solution allows custom instruction tests

to be easily added into test graph
• Breker synthesis combines these tests with the

app to ensure full custom processor testing

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential

Additional
Instructions

Agenda

• Test Suite Synthesis and SystemVIP
• RISC-V Core Verification SystemVIP
• RISC-V SoC Verification SystemVIP

29

SoC-Integrity Challenges

© Breker Verification Systems, Inc. All rights reserved. Breker Systems Confidential 30

Breker
RISC-V SoC-Integrity

SystemVIP

Random Memory Tests Test Cores/Fabrics/Memory controllers across DDR,
OCRAM, FLASH etc

Random Register Tests Read/write test to all uncore registers
System Interrupts Randomized interrupts through CLINT
Multi-core execution Concurrent operations on fabric and memory
Memory ordering For weakly order memory protocols
Atomic operation Across all memory types
System Coherency Cover all cache transitions, evictions, snoops
System Paging/IOMMU System memory virtualization
System Security Register and Memory protection across system
Power Management System wide sleep/wakeup and voltage/freq scaling

• End-to-End use cases
• Early Firmware Testing
• Performance-Power Profiling

RISC-V SoC Integrity TrekApp

31

test.c
Multi-Agent
Schedules

Planning
Algorithm

Physical
Memory
Topology

Memory
Interleave

Memory
NoInterleave

Privilege
Levels

Exceptions/
Interrupts

System
Agents

Cores

CXL/PCIE
Ext. I/O

DMA etc.
Int. I/O

AXI/CHI
Ext. VIPs

Address
Hazards

False Share
Cacheline

Cache Index
Hashes

Stride
Patterns

Memory
Operations

Load/StoreFence

CMO Atomics

RISC-V SoC Testbench Integration

32

Tr ekS o C

Cache-Coherent Switching Fabric

CPU CPU CPU CPU

L1 L1 L1 L1

L2

CPU CPU CPU CPU

L1 L1 L1 L1

L2

…

L3 Cache / Snoop Filter

Memory
Controller

Memory
Controller Offload

Compiler

test.ctest.ctest.c

TrekBox

test.ctest.ctest.tbx

PCIE Ethernet

PCIE
VIP

Ethernet
VIP

Scenario
Model

Virtualized OS Services

Multi-Agent Scheduling Plans: Overview
• True Sharing within scenario
• False Sharing across scenarios

33

N Transition Scenarios

Concurrent Scenario Test Case

N Transition Sequences

Schedule Memory
Interleave & Pack
Resolve Dependencies

RV64 MultiCore MoesiStates

34

Planned Cache State
Transitions

Atomics Testing

35

Check result is aggregate of
synchronized atomic
operations

RISC-V SoC Memory Ordering: Dekker Algorithm
• Assume initial state A=0 , B=0

• The Dekker Algorithm States
core 0: ST A, 1; MEM_BARRIER; LD B
core 1: ST B, 1; MEM_BARRIER; LD A
error iff (A == 0 && B == 0)

• This is a test for a weakly ordered memory system
• Such a system must preserve the property that a LD may not reorder ahead of

a previous ST from the same agent

36

Dekker Memory Ordering

37

Check ordering across
synchronized Dekker
scenarios

MultiCore MMU Tests

38

All cores Swap MMU
PTE’s and check
memory access

False-Share Memory Stress Tests

39

Byte 0Byte 1Byte 2Byte 3Byte 4Byte 5

Allocate set of memory blocks

Random cores with
synchronized start

Each core operates on a “slice”
of memory

Each core has free
running loop

High Coverage and Bug Hunting
Typical directed coherency coverage

… vs. Breker automated coherency tests

1. RISC-V spec misunderstanding between core vendor and user

2. Coherent Mesh Network (CMN) programming issues

3. Misconfigured ARM CMN pin to enable coherent traffic

4. DDR model unable to handle AXI "wrap" transactions.

5. Common cache line access reveals deadlock

6. Custom instruction bugs discovered by stress tests

7. Results mismatch with ultrawide address strides

8. Incorrect exception for guest virtual address[63:38] = 0x1ffffff

9. Bad mcause value for guest physical address[63:31] != 0x0

Recent examples of bugs discovered in real designs
SystemVIP Test Suite Synthesis Coverage Comparison

Bug Example: RISC-V spec mis-interpretation
• Design: Customer SoC using a third-party RISC-V processor
• Breker SystemVIP: RISC-V SoC & Coherency TrekApp
• Bug: Weakly ordered memory read-write mismatch on complex load-store
• Test: Combined RISC-V Load Store and Dekker Algorithm
• Reason: Misunderstanding in RISC-V Fence instruction execution
• Resolution: Bug agreed by processor vendor, processor core reissued

41

The Dekker Algorithm States
core 0: ST A, 1; MEM_BARRIER; LD B
core 1: ST B, 1; MEM_BARRIER; LD A
error iff (A == 0 && B == 0)

Processor A

copy to
(write)

Processor B

check
(read)

check
(read)

check
(read)

Concurrent Test Execution

42

test_cpu1.c test_cpu2.c test_cpu3.c

SD Card
Controller

Read

Camera

Photo
Processor
Decode

Display
Controller

SD Card
Controller

Write

Photo
Processor

Encode

Display
Controller

SD Card
Controller

Write

SD Card
Controller

Read

SD Card
Controller

Read

Photo
Processor
Decode

Display
Controller

test.c

SD Card
Controller

Read

Display
Controller

Display

SD
CardCCD

Photo
Processor

Encode

SD Card
Controller

Write
Camera

SD
Card

Photo
Processor
Decode

Memory
Region 1

Memory
Region 2

Memory
Region 3

Raw Image #1

JPEG-Encoded
Image #1

Camera

SD Card
Controller

Write

Photo
Processor

Encode
JPEG-Encoded

Image #2

Raw Image #2

Camera

Display
Controller

Camera

Testbench

SoC RTL

CPU Photo
Processor

Memory

Camera Display
Controller

Fabric

Fabric

VIP

SD Card
Controller

VIP VIP

System
and

Power
Control

Core-Integrity Example:
Multi-Hart (x4), 3 Threads Each

Execution Profiling

Post-run analysis of design
performance/power bottlenecksQuickly observe concurrent multi-test progress and DUT reaction

Advanced, Abstract Debug

Breker Concurrent Scheduling Stress Tests the Processor/SoC

Post-execution test length
based on # clocks,
instructions, etc.

Basic Workload Test,
Single Core

Basic Workload Test,
Multicore

Mem Mem

Scalability – Going from One to Many Cores
Re-running your test(s) in multi-core designs

Basic Workload Test,
Single Core

Basic Workload Test,
Multicore

Mem Mem

Cache-line

Knobs:
• Stride Size

Granularity: Cache-line
Scalability –What Are the Additional “Knobs” For Multi-Core?

Exercising: Evictions (L1, L2, LLC)

Basic Workload Test,
Single Core

Basic Workload Test,
Multicore

Mem Mem

Cache-line

Granularity: Word
Exercising: False-Sharing

Scalability –What Are the Additional “Knobs” For MultiCore?

Thanks for Listening!
Any Questions?

www.brekersystems.com

