
Proven Strategies for Better
Verification Planning

DVCon 2022 Workshop

Presenters

2

Paul Marriott - Verilab Consultant

Jeff Vance - Verilab Consultant

Jeff McNeal - Verilab Consultant

Typical Engineering Team Situation

Many teams don't
view the effort to

write a verification
plan as time well

spent

Take too long
to write
•Don't have

enough
information early
in project

•Don't want to
take weeks to
write a detailed
plan

Don't have
useful
information
•Don't provide

useful
information to the
team: "nobody
reads them"

Hard to
maintain
•Don't react well to

changes
•Contain obsolete

information

3

What is a Verification Plan?

Scope

• Full Feature
• Integration

Only
• Simulation
• Formal

Verification
Requirements

• Feature
Extraction

• Scenarios
• Coverage

Plan*

Project Plan*

• Resources
• Budget
• Schedule

Implementation
Plan*

• Testbench
Environment

• Stimulus Plan
• Checking Plan

Reusable
Components

• Agents
• Sequences
• Assertions
• VIP

4

*optional, high-level
planning only

*can be separate document

Key Workshop Topics

DUT Feature Identification
•Isolation
•Scenario Classification
•Weakness analysis

Scheduling
•Divide work into deliverables
•Organize deliverables for Linear Progress

5

DUT Feature Identification

6

Verification Planning Mindset

Avoid
Testbench Implementation (the HOW)

Features by testbench component
Too many details

Test Lists
Specific coverage bin values

How coverage is sampled

Do
DUT Mindset (the WHAT and WHY)

Features by DUT functionality
High-level decisions

Scenario descriptions
Quantity/kinds of coverage bins

When/where coverage is sampled

7

Feature Isolation

1

Classify Scenarios

2

Inspect Weaknesses

3

Feature Analysis Strategy

8

Feature Isolation

9

Isolate focus to a portion of the DUT
•By Design Spec
•By RTL Block
•By Large-Scale feature (across blocks)
•By use-case
•By risk (bug / complexity risk)
•By special case

10

Feature Categories

10

11

Scenario Classifications
Isolated Features

● Analyze key behaviors individually
● Ideal for incremental progress, debug, and

sanity regressions

Mixed Features
● Key combinations of isolated features
● Can be use-cases / special cases

Legal Exceptions
● Abnormal cases that are supported
● Must be in design spec!

Illegal Scenarios
● Unsupported by design
● Spec must say what is unsupported
● Some tests may stress the design

busses txn types txn flows

configs timingsblocks

soft reset protocol errors FIFO full

mixed txn types

mixed cfg/timing

mixed txn flows

mixed blocks

DUT ignores It recovers on reset

12

Future Benefits
Faster Implementation

● Plan will influence Testbench design
● Reduce complexity
● Avoid work duplication

Execution Flexibility
● Isolate bugs
● Navigate around blocking issues
● Debug problems faster

Better Communication
● Status for management & stakeholders
● Collaborate with design team
● Enable new teammates rapidly
● Review/close coverage faster

Accurate Scheduling
● Accurate estimations of effort
● Better prioritization of tasks
● Stay on schedule

13

Find Weaknesses in the Plan

Analysis Toolbox
● Correctness: Is this valid ?
● Precision: Is this specific ?
● Completeness: Anything missing ?

Avoid Ad-hoc Thinking
● Luck has more influence
● Schedule Risk
● Testbench Rework
● Missed Verification Scenarios
● Bugs found late (or missed)

Apply Structured Analysis
● Directs our thinking to key areas
● Is organized
● Is consistent

14

Plan Correctness Assessment

Is this technically possible?

DUT implements this option?

Is behavior fully specified?

Do we care?

Is it a valid use-case?

Are details relevant to verification?

RTL parameters allow this option?

15

Precision Assessment
What are we specifically verifying?

DUT Processes Transactions

Transactions Undisturbed by Event

Value Ranges

Throughput

Event Timing

Resource
Contention

Access Rights

What is the context?

Feature Dependencies

Disqualifying Conditions

Any missing contexts?

Different goals per context?

16

Completeness Assessment
List Influencing Variables

How can variable change?

How do changes impact DUT?

List verification requirements per
impact

Review each Scenario

What do you expect?

What don’t you expect?

List verification requirements per
expectation

Analyze Feature Cross-Concerns

Categorize all unique
outcomes

List verification requirement
per outcome

Categorize feature
combinations

Scheduling Challenges

Common failure modes:

•Too much detail too soon
•Too little planning
•Too focused on testbench blocks

17

Too much detail too soon
• Usually good faith effort
• Labor intensive
– Need to plan every item on feature list
– Every change requires a detailed plan update
– Every finished task requires plan update

• Granularity issues
– Small tasks require small amounts of time (hours)

• Doesn't communicate well with team
– Hard to tell exactly what is finished and what isn't

18

Too little detail

19

• Little to no organization of verification effort
• Can lead to poor communication with other

teams
• Confusion about what has been verified or

not
• Lack of trust in verification team

• Leads to using proxies for progress (coverage,
tests)

“We'll be
done when
we're done”

Too focused on blocks

20

Suffers from estimation
of finished before

complete amount of work
is known

• Need substantial
testbench architecture
work up front

• How many lines in 100% ?

Changes mean that
things that were done

now are not

• By some unknown amount

Poor communication
outside verification team

• Outsiders don't know
testbench details

Clear Communication

21

What have we verified?

What is left to be verified?

Are we on schedule?

When will we be finished?

We can build our own metric using the deliverables we've already defined.

Scheduling: Just Right
Low effort for fast results

• More detail easily added later if necessary

Clear communication of verification status
• Clear to all teams what is done and what is left to do

Flexibility
• Reacts well to changes
• Adapts to differing degrees of documentation completeness

22

Improving Scheduling Abilities

23

Two methodologies that reduce effort and increase
effectiveness:

Group work into deliverables

Organize deliverables for linear progress

24

What do we mean by deliverable?

•Definition of Done - what will be done for this
deliverable

•List of work - what is needed to complete the
deliverable
• Group things that are related to the same feature
• TB infrastructure, Coverage, Checks, Stimulus

•Effort estimate

25 25

Definition of Done

•Unique to each deliverable
•Action not state
•Whole testbench, not smaller parts
•Not necessarily feature verification done

Better Definitions of Done

A block is done when it is completely coded,
committed, running & passing in regressions.

Agent coding 80% done

75% of tests written

Send single packet through DUT

Boot micro-controller & read IO
values

Register reset value test passes

Better Deliverables: Think Demonstration

27

A test that sends
a single packet

through the DUT

A test that checks
reset values of all

registers

A test that
encrypts one AES

transfer

100% coverage of
a particular

feature

Nightly regression
script, including

notification for the
team

Published
coverage report
from a nightly

regression

Web-page with
generated

documentation of
TB

Better Deliverables: Completeness

28

List all the tasks that will need to be completed for the deliverable

• Testbench work
• Limit to necessary functionality
• Include all aspects across agents, stimulus, checkers, etc

• Compute & infrastructure work
• Scripting, report generation, etc.

Remove anything not essential to this deliverable

29

Example

Definition of Done:

• Test which encrypts one AES
transfer

Work:

• Add AES encryption method
• Add AES decryption method
• Update sequence item

• update do_compare()

Update configuration object

New test

• New DUT modes
• Keys

Coverage

• New key sequence
• New virtual sequence (key + traffic)

Program Keys

29

Better Deliverables: Effort Estimate

30

•First time through, do a quick and rough estimate
•Put together rough schedule for all deliverables

Estimate how much time each deliverable takes to
complete

31

Better Deliverables: Estimate

● Add AES encryption method (learning, arch. & coding) 21 days
● Add AES decryption method (learning, arch. & coding) 18 days
● Sequence item

○ update do_compare() with encryption 5 days
● Program Keys

○ New sequences 4 days
○ New virtual sequence (key + traffic) 1 day

● Update configuration object ½ day
● New test ½ day
● Coverage

○ New DUT modes 1 day
○ Keys 1 day

● Total 52 days

Deliverables: Review & Refine
•Will the schedule meet the requirements of the larger

team?
•Will the team be able to meet the input requirements

of the verification team?
•Do we need to reorder things to avoid downtime?

Review with
stakeholders

•Likely need to modify some deliverables based
on feedback

•May need to divide some deliverables
Refine

32

Linear Progress

•Evenly sized deliverables
•Evenly spaced delivery dates
•Team works together on single deliverable
•Later deliverables build on earlier work

What do we mean by Linear Progress?

33

Coverage & Scheduling

35

Linear Progress Planning

Hard for outsiders to see
the difference between

• ideal coverage
• We'll suddenly get

more productive next week

%
 fi

ni
sh

ed

time

36

Linear Progress Planning & Status

%
 fi

ni
sh

ed

time

Clear communication

Regular deliverables

Predictable timeline

Simple status tracking

Linear Progress Planning: How to

37

•Clear beginning and endingOne deliverable at
a time

•May need to divide or combine
some deliverablesConsistent sizes

•Depth first v breadth firstOrder to build on
previous work

38

A Note on Ordering

•Finish up major features one at a time
•Design team may focus on a few things first
•Some features may be completely coded or brought in as IP

Depth first development

•Simple implementation first, then go back and add more features
•Many designers working in parallel

Breadth first development

Status Updates

39

•Running estimate vs actual gives
idea of ahead/behind

Simple to determine
which deliverables

are done

•Higher abstraction level reduces
status reporting effort

Simple to determine
what isn't done

•Easy to determine if we're ahead or
behind on current deliverable

Simple to know what
is being developed

Flexibility
We'll inevitably have changes

• Want to be able to modify schedule easily
• Communicate impact clearly

Refine or absorb small changes in future work

Add new deliverables for significant changes

• New features / modes
• Changes to finished work

Reviewing the changes to the plan with the team will communicate the impact in a
way that will be easily understood

40

Detail levels

41

Complete and detailed
specification
•More complete and detailed

verification plans
•Spend time to get things like

coverage and assertions detailed in
the plan

Minimal or in-progress specification
• Less detailed verification plans to start
• Schedule and estimate the first few major deliverables
• Add detail to later deliverables as the time gets closer and

details have been finalized
• Add in time for planning and architecture to each

deliverable's effort estimate

Does our process produce these results?

• More detail easily added later if necessary
• Independent of larger team

Low effort for fast results

• Clear to all teams what is done and what is left to do

Clear communication of verification status

• Reacts well to changes
• Adapts to differing degrees of documentation completeness

Flexibility

Question and Answer Session

Verilab has deep
experience in Verification

Planning garnered through
working with many clients
over our 22 year history

Contact Jason Sprott
(Jason@verilab.com) to
schedule a consultant to

help you create a
Verification Plan for your

project

mailto:Jason@verilab.com

