
1

Problematic Bi-Directional Port Connections:
How Well is Your Simulator Filling the UPF

LRM Void?
Brandon Skaggs

Cypress Semiconductor, An Infineon Technologies Company

2

Agenda
• Motivation and Contributions of this Paper

• Common Bi-directional Port Issues

• Common Bi-directional Port Modeling Approaches

• Test Setup / Scenarios

• Results

• Analysis & Concluding Remarks

3

Motivation
• The UPF LRM does not describe in detail the handling of bi-directional

(inout) HDL port connections—leaving this open to interpretation of
EDA tool vendors.

• How tools interpret proper behavior of bi-directional port semantics
can have an impact on best practices for designing hierarchical power
intent and writing effective models for simulation.

• An understanding of how contemporary commercial simulators
handle these ports can inform best practices – and possibly suggest
improvements in future IEEE 1801 revisions.

4

Contribution
• This paper presents a systematic survey of the behavior of three

contemporary power-aware digital simulators in handling bi-
directional ports.

• This presentation will:
• Discuss two common bi-directional supply port modeling scenarios.

• Present three methods for modeling bi-directional connections—and review
the support of each method by each simulator.

• Present the problem statement and test scenarios under study

• Review final results and concluding remarks—including possible
enhancements to future UPF LRM revisions

5

Common Bi-Directional
Port Modeling Scenarios

6

Scenario 1: Inout HDL to Supply Net

• Is module M being
supplied by ‘vdd’?

• Or is module M
supplying ‘vdd’ to the
system?

• Per the UPF LRM, the
existence of the ‘inout’
port implies a driver…

7

Scenario 2: Hierarchical Supply Nets

Not Supported?

8

Bi-Di Port Modeling Approaches

9

Method 1: Compiler Directives

• Well-defined Verilog
behavior

• Can require
modification of IP-
provided models.

10

Method 2: Custom Resolution Functions
• UPF provides several built-in resolution functions for resolving

multiple-driver situations—which often occur when bi-directional
ports are involved

• ‘unresolved’ – resolves to UNDETERMINED if more than one source is
connected/possible (default)

• ‘one_hot’ – allows multiple drivers, but only one can be active at a time.
• ‘parallel’ – expects multiple drivers, and is only FULL_ON if all sources are

FULL_ON
• ‘parallel_one_hot’ – combination of ‘one_hot’ and ‘parallel’: only one root

supply can be active, but all derived supplies must be FULL_ON for FULL_ON
resolution.

• For more complex interactions, a SystemVerilog function can be used
instead to resolve the supply net in a custom manner.

11

Method 2: Custom Resolution Functions
• Well-defined

SystemVerilog behavior

• UPF 3.x only

• No inherently-defined
way of distinguishing
the multiple sources
being resolved

• No ‘name’ field to
reference, so arguments
must be kept track of
positionally.

12

Method 3: Using Built-in HDL Resolution
Rather than use the UPF-provided resolution functions, supply nets can
be resolved in HDL directly by:

1. Intentionally removing/omitting ‘normally resolved’ UPF supply net
connection

2. Including in testbench ‘bound in’ code that resolves the various HDL
sources (using HDL values and signal strengths) to a single HDL
resolution.

3. Connecting the resolved HDL signal to the UPF supply net within
the UPF.

13

Method 3: Using Built-in HDL Resolution

14

Method 3: Using Built-in HDL Resolution

15

Method 3: Using Built-in HDL Resolution

16

Method 3: Using Built-in HDL Resolution

17

Test Setup & Results

18

Test Setup
• Default Behavior Tests:

• Scenario 1A: Test UPF to HDL bi-directional connections (used as inputs)

• Scenario 1B: Test UPF to HDL bi-directional connections (used as outputs)

• Scenario 2A: Test hierarchical supply connections within UPF (HDL ports
declared as bi-directional)

• Scenario 2B: Test hierarchical supply connections within UPF (HDL ports
declared with functional direction)

• Support for Modeling Approaches
• Modeling 1: Test support for using compiler directives

• Modeling 2: Test support for UPF custom resolution functions

• Modeling 3: Test support for HDL resolution functions

19

Results: Scenario 1A
• Test data showed that for the common scenario – where a bi-

directional HDL port on a macro model was intended to be used as an
input (sink) to the model, all three simulators resolved the port
behavior as expected

Simulator A Simulator B Simulator C

-Warning that resolution (vct)
functions could not be applied to
HDL bi-di ports.
-Bi-di supply ports resolved
correctly to ‘input’.

-Bi-di supply ports resolved
correctly to ‘input’.

-Warning that the bi-directional
HDL ports would be treated as
inputs.
-Bi-di supply ports resolved
correctly to ‘input’.

20

Results: Scenario 1B
• The reverse scenario – where the bi-directional HDL signal was

coming from a switch model and intended to be a source – showed
mixed results.

Simulator A Simulator B Simulator C

-Note that bi-di port is being
treated as an output
-Bi-di supply ports resolved
correctly to ‘output’.

-HDL bi-di ports were treated as
inputs; UPF supply net connections
were treated as sources.

-Warning that bi-di HDL port was
being treated as an input.
-HDL bi-di ports were treated as
inputs; UPF supply net connections
were treated as sources.

21

Scenario 2A: Hierarchical Supply Net

22

Results: Scenario 2A – Hier UPF, bi-di HDL ports

• Could only test Simulator A (B & C treated as inputs)

• For Simulator A, the results were as expected; the behavior for HDL
‘inout’ ports matched expectations

• Warning that ‘inout’ for UPF port direction is not supported…?

• Top-level supply net resolved as expected—only FULL_ON when all
hierarchical supplies were on.

• Submodule supply net showed PARTIAL_ON as expected when only top-level
supplies were on.

23

Scenario 2A: Hierarchical Supply Net

24

Scenario 2B: Hierarchical Supply Net
• System-level supply net (vcc_sw)

has three drivers; it should be
PARTIAL_ON when any one is on
and only FULL_ON when all
three are FULL_ON.

• Subsystem-level supply net
(vcc_sw_ss) should exactly
mimic this behavior.

25

Scenario 2B: Hier Supply Net, ‘out’ UPF port
• System-level net (vcc_sw) still

retains three drivers and
‘parallel’ resolution
expectations…

• Subsystem-level net (vcc_sw_ss)
now has only one driver (u_s1),
so it should not be influenced by
system-level drivers…

26

Scenario 2B: Hier Supply Net, ‘in’ UPF port
• System-level supply net (vcc_sw)

should not depend on
subsystem net state for
resolution.

• Subsystem-level supply net
(vcc_sw_ss) should see two
drivers (same as Scenario 2A)

27

Results: Scenario 2B – Hier UPF, uni-di HDL ports

• The results showed that all three simulators modelled the proper
behavior of the system supply net when it was declared ‘inout’ –
showing FULL_ON only when all contributing supplies were on.

• However, all three simulators exhibited slightly different behavior
when dealing with UPF supply port connections that are hierarchically
connected, and all three exhibited slightly errant behavior based on
an expectation from the LRM.

28

Results: Scenario 2B
Simulator A Simulator B Simulator C

Same results as Scenario 2A:
-Top-level supply net resolved as
expected—only FULL_ON when all
hierarchical supplies were on.
-Submodule supply net showed
PARTIAL_ON when only top-level
supplies were on.
-Unusual results were seen when
hierarchical UPF port was declared
as ‘out’: subsystem goes
PARTIAL_ON when system supplies
are active.
-Unusual results were seen when
hierarchical port was declared ‘in’:
subsystem supply never goes
FULL_ON

-Top-level supply net resolved as
expected—only FULL_ON when all
hierarchical supplies were on.
-Submodule supply net showed
PARTIAL_ON when only top-level
supplies were on.
-Unusual results were seen when
hierarchical UPF port was declared
as ‘out’: subsystem goes
PARTIAL_ON when system supplies
are active.
-Unusual results were seen when
hierarchical UPF port was declared
as ‘in’: subsystem and system nets
go PARTIAL_ON as soon as parent
domain is valid.

-Top-level supply net resolved as
expected—only FULL_ON when all
hierarchical supplies were on.
-Submodule supply net showed
PARTIAL_ON when only top-level
supplies were on.
-Unusual results were seen when
hierarchical UPF port was declared
as ‘out’ or ‘in’: results match the
‘inout’ port declaration case.

29

Results: Modeling 1 – Compiler directives
• Compiler directives are well supported by all three simulators under

consideration, and there were no issues using these to get the
expected behavior.

30

Results: Modeling 2 – UPF resolution
• Support for user-defined resolution functions was somewhat uneven,

with all three simulators exhibiting slightly different behavior.

• Simulator A was the only one to accept the example from the IEEE-
1801 specification as written.

Simulator A Simulator B Simulator C

Supported IEEE-1801 example
resolution function.

Only allows resolution between
two supply nets – task (not
function).

Allows function definition only via
vendor-provided IEEE-1801 custom
extension, limited resolution
options.

31

Results: Modeling 3 – HDL Resolution
• When using HDL resolution functions, the results were mostly

positive; all three simulators supported the basic functions of binding
a resolution module via a testbench and resolved HDL conflicts as
expected.

• However, only Simulator A supported doing this on HDL nets defined
and connected within the UPF with ‘create_logic_net’ and
‘connect_logic_net’ commands.

• Simulators B and C required the nets to be defined within the HDL.

• This limitation in Simulators B and C seems arbitrary and out of sync with
the expectations of the UPF LRM to allow the creation of new logic nets
when needed.

32

Analysis & Conclusions

33

Analysis
• The UPF/HDL resolution vectors ‘vct’ do not seem to be used for

resolving supply net drive direction—in spite of the fact that they are
written and applied with a source/destination direction in mind.

• Simulator A was the only simulator to allow bi-directional HDL ports
to be connected and used as outputs; the other two defaulted the
ports to ‘inputs’ in spite of the context of what they were being
connected to. It was also the only simulator to fully support the
example IEEE1801 custom resolution function as written, and it was
the only simulator to allow binding connections with UPF-provided
logic nets.

34

Analysis
• UPF custom resolution functions are difficult to apply because supply

nets do not contain a ‘name’ or ‘id’ that would allow a user to
distinguish between a set of supplies to resolve.

• The resulting supply sources of ‘supply_net_type’ appear only with
state and voltage information, and the UPF LRM does not provide an
explicit definition about the order that supply net connections are
maintained in when multiple ‘connect_supply_net’ commands could
each make multiple supply net connections each.

35

Conclusions
• The default treatment of inout HDL ports and UPF hierarchical port

connections vary across EDA vendors…

• Basic support of common bi-directional port modeling function is
uneven across the three major EDA simulators…

• Future UPF revisions should seek to take advantage of ‘vct’ drive
direction information when provided to determine which side of a
supply net is the source.

• Future UPF revisions should make this ordering of resolution function
supplies explicit, or future supply_net_type definitions should include
a name field that is populated when nets are declared.

36

Questions?
Thank you for your attention!

