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Abstract—The UPF LRM does not describe in detail the handling of bi-directional (inout) HDL port connections, and 

this leaves the handling of commonly-used connections open to the interpretation of EDA vendors.  In this paper we 

present two common bi-directional supply port connections that are often the source of unexpected corruption before 

discussing three possible methods for working around them.  We then examine how well each of the three main EDA 

simulators support the initial scenario and the proposed workarounds.  Finally, possible future enhancements to the UPF 

LRM to ensure well-defined behavior across all tools is discussed. 

 

 

I. INTRODUCTION 

The IEEE1801 Standard for Design and Verification of Low-Power, Energy-Aware Electronic Systems—

commonly known as the Unified Power Format (UPF) standard—provides a framework for describing the power 

intent and supply distribution for both implementation and power-aware verification tools.  Power domains, supply 

connectivity, and expected (or invalid) power states can be defined in a way to direct synthesis tools to select cell 

libraries (typically provided in Liberty format) appropriate for the design, LINTing tools to verify that 

implementation is achievable, and layout tools to properly implement the intent.  Functional power-aware simulation 

(which often inserts or substitutes functional, power-aware behavioral models for Liberty cells/macros) can also use 

the UPF power intent specification to verify correct functional behavior along with power state transitions and 

correct isolation and retention during power-down. 

 

However, the behavior of bi-directional HDL ports commonly used to model supplies within power-aware 

behavioral models are not well defined by even the most recent UPF LRM specifications.  This leaves the behavior 

of these ports (and their interaction with connected supply ports) up to the implementation chosen by the EDA 

vendor. 

 

This paper presents two common ‘problematic’ bi-directional port modeling issues found within power-aware 

simulations, describes possible methods for modeling these connections, and tests the support for each of these 

methods within the most widely-used power-aware simulators in the market.  Finally, enhancements to future UPF 

LRM revisions are discussed—enhancements that would align expectations to a common, well-defined behavior. 

 

 

A. Motivation & Contributions of this Paper 

How tools interpret proper behavior of bi-directional port semantics can have an impact on best practices for 

designing hierarchical power intent and writing effective models for simulation.  This paper presents a systematic 

survey of the behavior of contemporary EDA functional, digital simulators—in an area where the IEEE specification 

is not explicit—in order to inform these best practices and suggest improvements in future IEEE 1801 revisions. 

 



B. Organization of this Paper 

We begin our discussion by describing some common areas where bi-directional ports are used within power-

aware simulations, followed by a presentation of several common methods for modeling bi-directional ports and 

their proper resolution.  Data is then presented on the default behavior of the three major EDA simulators within 

these common scenarios and modeling approaches—discussing the results and any issues encountered.  Finally, the 

paper concludes by discussing items for future study. 

 

 

II. KEY TERMS 

Unified Power Format (UPF) IEEE standard format for describing intended design power intent abstractly 

Power Management Pertaining to the modulation of supply for the purpose of reducing circuit power 

Power-aware Simulation Digital simulation where power-related behavior is modelled. 

Supply Net type Object type representing a supply with a state and voltage component 

Source Object providing power to a sink 

Sink Object being driven by a source 

 

 

III. COMMON BI-DIRECTIONAL PORT MODELING SCENARIOS 

Consider the common scenario where a connection is made between a power-aware simulation model and a UPF 

supply net, as presented in Figure 1.  Since supply voltages are often treated within Verilog as logic ports with 

‘inout’ port direction, this creates a classic ‘supply net to HDL inout’ connection within the simulation. 

 

 
Figure 1. Typical Bi-Directional HDL to Supply Net Connections (Scenario 1) 

 

From the connection itself, it is not clear within the system S whether the behavioral model of module M is meant 

to be a source or sink for the connected supply net VDD.  If the ‘vdd’ HDL port on module M is meant to model an 

input supply, it wouldn’t be expected to drive the connected supply net; however, if module M were modeling a 

power switch, and the HDL port was representing a switched output, then it would be a source and not a sink on the 

supply net.  Per the UPF LRM, the existence of an ‘inout’ port implies the latter (a source driving the supply net), 

but the common scenario is the former (a simple sink being driven by the supply).  This often creates a ‘multiple 

driver’ error and corruption on the supply net—when corruption on the supply net is not what would actually happen 

within the system. 

 

This scenario can be extended to examine a similar resolution concern when ‘inout’ UPF supply ports are used to 

describe connections within a hierarchical power intent definition.  Consider the scenario in Figure 2 where a supply 

net is driven by several power switches – distributed among submodules whose power intent is described 

independently and referenced hierarchically. 



 

 
Figure 2. Example of a Hierarchical Supply Connection Requiring ‘inout’ Supply Ports (Scenario 2) 

 

In this example, the resolution of the vcc_sw supply net can only be obtained if the state of the submodule’s power 

switch can be reflected onto the net through the ‘inout’ supply port; however, some simulators do not fully support 

‘inout’ supply ports, and instead model them as the default ‘input’ direction.  This can create challenges when 

hierarchical abstraction and re-use are leveraged within the chosen verification methodology.  Other methods for 

resolving the state of these parallel networks is required, and they are the topic of the next section. 

 

 

IV. METHODS FOR MODELING BI-DIRECTIONAL PORTS 

There are several commonly-used methods for handing problematic bi-directional supply ports within simulation; 

this paper will discuss three methods, discuss the advantages and disadvantages of each, and test compatibility 

among the three most commonly-used simulators. 

 

A. Using Compiler Directives to Modify HDL Port Direction 

This method involves defining the behavioral model port directions based on compiler directives in order to select 

the most appropriate unidirectional port direction when the model is compiled for power-aware simulation.  Since it 

uses well-supported pre-compiler syntax and directives to completely avoid the bi-directional situations discussed in 

Section III, this approach is often the most straightforward and widely-supported approach.  However, it requires 

modification of IP-provided models—which may not be an option for cases where third-party IP are used.  An 

example of a macro written with compiler directives to manage port direction is given in Figure 3. 

 

B. Defining Supply Net Custom Resolution Functions (UPF 3.x) 

IEEE1801-2015 (commonly referred to as UPF 3.0) revised the UPF LRM to add the ability to create custom 

supply net resolution function where the pre-defined resolution functions (unresolved, one_hot, parallel, and 

parallel_one_hot) were not sufficient to resolve more complex supply connections.  By creating the capability to 

define resolution rules that could be unique for any given supply net, conflicts caused by bi-directionally-driven 

supply nets could potentially be resolved by examining the states of all drivers and assigning an appropriate value 

for the resolved net based on the context. 

 



 
Figure 3. Example of Using Compiler Directives to Resolve Bi-Directional Ports 

 

An example of a custom resolution function from the IEEE1801-2015 specification is presented in Figure 4.  

Figure 5 shows how this custom function could be referenced within the UPF supply net declaration. 

 

 
 

Figure 4. Custom Resolution Function from IEEE 1801-2015, Section 6.24.3 

 

 

 



 
 

Figure 5. Referencing a Custom Resolution Function from a User-Defined Package 

 

 

C. Resolving Supply Net Using HDL Resolution Functions 

This approach involves intentionally removing UPF connections for supply nets that have problematic HDL bi-

directional connections—replacing them with testbench code that monitors changes in the source supplies and then 

reflects the desired resolution on the HDL model nets and supply nets as appropriate.  Since the testbench-provided 

code intercepts the possible drivers, the built-in HDL resolution function of the testbench language (Verilog, 

SystemVerilog, or VHDL) can be leveraged to resolve the supply net state before it is driven onto the supply net by 

the testbench – which is now its only source. 

 

One key advantage to this approach (over using the UPF native supply net resolution functions or writing a 

custom resolution function) is the larger number of net values that can be used.  Whereas UPF has only 

UNDETERMINED, OFF, PARTIAL_ON, and FULL_ON states for supply net resolution, HDL signals (in addition 

to ‘X’, ‘0’, and ‘1’ states) add signal values for high-impedance (‘Z’) and various signal strengths (‘W’, ‘L’, ‘H’, 

‘strong’, ‘weak’, ‘pull’, etc.) – all with well-defined resolution functions that can be used to model priority or 

combinations of acceptable values.  By giving different contributors to the supply net resolution different HDL 

strengths, a higher granularity of control is available. 

 

Another key component of this approach is that it can be achieved by ‘binding’ resolution functions from within 

testbench code – without requiring changes within the design under test to accommodate this modeling. 

 

Let’s look at an example of how HDL resolution could be performed.  In this example, a system where the active 

supply net (vact_cus) can be driven by a single external supply (sw_M), or—if the supply is absent (driven ‘Z’ by 

sw_M)—it can be switched on internally by a series of internal switches (sw_1 and sw_2) and resolved as a parallel 

net.  Note that in this scenario, there is no pre-defined resolution function for ‘vact_cus’ that is appropriate. 

 

Rather than connect the outputs of all three switches to ‘vact_cus’ and provide a resolution function, the outputs 

of the switches are connected to a module that is added via a ‘bind’ statement from the testbench.  This module 

contains the resolution function that allows the switch output to follow ‘sw_M’ if it is driven, but to follow the state 

of both ‘sw_1’ and ‘sw_2’ if it isn’t.  A supply net connection within the UPF file makes the final translation and 

assignment from HDL to supply_net_type.  Figure 6 shows the relevant HDL and UPF statements, and Figure 7 

shows the resulting waveform. 

 

 
 

Figure 6. Resolving UPF Supply Net Drivers using HDL Resolution Functions 



 

 
Figure 7. Resolved Supply Nets with Priority 

 

From the waveform, you can see how ‘vact_cus’ is FULL_ON whenever sw_M is on; or, if sw_M is disconnected 

(Hi-Z), ‘vact_cus’ is FULL_ON when both sw_1 and sw_2 are on… 

 

 

V. TEST SCENARIOS 

In order to provide a picture of EDA tool support for bi-directional ports, the behavior of the three most 

commonly-used power-aware simulators in the industry were tested for default behavior within the scenarios in 

Section III—for default behavior and for support of the as well as for the modeling methods described in Section IV. 
 

Default Behavior: 
Scenario 1A: Test UPF to HDL bi-directional connections (used as inputs) 

Scenario 1B: Test UPF to HDL bi-directional connections (used as outputs) 

Scenario 2A: Test hierarchical supply connections within UPF (HDL ports declared as bi-directional) 

Scenario 2B: Test hierarchical supply connections within UPF (HDL ports declared with functional direction) 

 

Support for Modeling Approaches: 

Modeling 1: Test support for using compiler directives 

Modeling 2: Test support for UPF custom resolution functions 

Modeling 3: Test support for HDL resolution functions 

 

Each simulator was randomly assigned a designator A, B, or C, and the results of testing with each are described 

in Section VI. 

 

 

VI. TEST RESULTS 

Scenario 1A: Test UPF to HDL bi-directional connections (used as inputs) 

Test data showed that for the common scenario – where a bi-directional HDL port on a macro model was intended 

to be used as an input (sink) to the model, all three simulators resolved the port behavior as expected. 

 

Simulator A Simulator B Simulator C 

-Warning that resolution (vct) 

functions could not be applied to 

HDL bi-di ports. 

-Bi-di supply ports resolved 

correctly to ‘input’. 

-Bi-di supply ports resolved 

correctly to ‘input’. 

-Warning that the bi-directional 

HDL ports would be treated as 

inputs. 

-Bi-di supply ports resolved 

correctly to ‘input’. 



 

Scenario 1B: Test UPF to HDL bi-directional connections (used as outputs) 

The reverse scenario – where the bi-directional HDL signal was coming from a switch model and intended to be a 

source – showed mixed results.  Simulators B and C treated the connected supply nets the same as in Scenario 1A 

and the connected bi-directional HDL ports as sinks.  Only Simulator A was able to determine that the bi-directional 

port was being driven by the HDL and modeled the appropriate behavior. 

 

Simulator A Simulator B Simulator C 

-Note that bi-di port is being treated 

as an output 

-Bi-di supply ports resolved 

correctly to ‘output’. 

-HDL bi-di ports were treated as 

inputs; UPF supply net connections 

were treated as sources. 

-Warning that bi-di HDL port was 

being treated as an input. 

-HDL bi-di ports were treated as 

inputs; UPF supply net connections 

were treated as sources. 

 

Scenario 2A: Test hierarchical supply connections within UPF (HDL ports declared as bi-directional) 

Because of the findings in Scenario 1B—that HDL bi-directional ports were always treated as inputs by two of the 

three simulators—it was not possible to model Scenario 2A with Simulators B and C and see any reasonable 

behavior for the system model where a submodule with an ‘inout’ UPF port drove onto a system supply net. 

For Simulator A, the results were mixed; the behavior for ‘inout’ ports matched expectations; however, unusual 

results were seen when the submodule / hierarchical UPF port was declared as ‘in’ or ‘out’ mode. 

 

Simulator A Simulator B Simulator C 

-Warning that ‘inout’ for UPF port 

direction is not supported. 

-Top-level supply net resolved as 

expected—only FULL_ON when all 

hierarchical supplies were on. 

-Submodule supply net showed 

PARTIAL_ON as expected when 

top-level supplies were on. 

-Unusual results were seen when 

hierarchical UPF port was declared 

as ‘out’: subsystem goes 

PARTIAL_ON when top-level 

supplies are enabled. 

-Unusual results were seen when 

hierarchical UPF port was declared 

as ‘in’: subsystem never goes 

FULL_ON. 

Test scenario not supported 

(See Scenario 1B above) 

Test scenario not supported 

(See Scenario 1B above) 

 

Scenario 2B: Test hierarchical supply connections within UPF (HDL ports declared with functional direction) 

This scenario was created to test the hierarchical UPF port connections after addressing the HDL port issues seen 

in Scenario 2A.  The results showed that all three simulators modelled the proper behavior of the system supply net 

– showing FULL_ON only when all contributing supplies were on. 

However, all three simulators exhibited slightly different behavior when dealing with UPF supply port 

connections that are hierarchically connected, and all three exhibited slightly errant behavior based on an 

expectation from the LRM. 



 

Simulator A Simulator B Simulator C 

Same results as Scenario 2A. 

 

-Top-level supply net resolved as 

expected—only FULL_ON when all 

hierarchical supplies were on. 

-Submodule supply net showed 

PARTIAL_ON when top-level 

supplies were on. 

-Unusual results were seen when 

hierarchical UPF port was declared 

as ‘out’: net behaves as if it were 

‘inout’ and goes PARTIAL_ON 

when system supplies are enabled. 

-Unusual results were seen when 

hierarchical UPF port was declared 

as ‘in’: subsystem and system nets 

go PARTIAL_ON as soon as parent 

domain is valid. 

-Top-level supply net resolved as 

expected—only FULL_ON when all 

hierarchical supplies were on. 

-Submodule supply net showed 

PARTIAL_ON when top-level 

supplies were on. 

-Unusual results were seen when 

hierarchical UPF port was declared 

as ‘out’ or ‘in’: results match the 

‘inout’ port declaration case. 

 

 

Modeling 1: Test support for using compiler directives 

As described in Section 4A above, compiler directives are well supported by all three simulators under 

consideration, and there were no issues using these to get the expected behavior. 

 

Simulator A Simulator B Simulator C 

Full support for compiler directives Full support for compiler directives Full support for compiler directives 

 

Modeling 2: Test support for UPF custom resolution functions 

Support for user-defined resolution functions was somewhat uneven, with all three simulators exhibiting slightly 

different behavior.  Simulator A was the only one to accept the example from the IEEE-1801 specification as 

written. 

Simulator B would only allow custom resolution sequences written as tasks—and documentation confirmed that 

resolution was limited to only two input supply nets.  This restriction seems arbitrary and likely to make this 

vendor’s implementation unreasonable for real applications. 

Simulator C supported some modifications to the standard supply net resolution functions via tool-specific 

extensions to the UPF commands, and only a very limited scope of changes.  There was no capability to define a 

generic resolution function within an HDL package. 

 

Simulator A Simulator B Simulator C 

Supported IEEE-1801 example 

resolution function. 

Only allows resolution between two 

supply nets – task (not function). 

Allows function definition only via 

vendor-provided IEEE-1801 custom 

extension, limited resolution options. 

 

Modeling 3: Test support for HDL resolution functions 

When using HDL resolution functions, the results were mostly positive; all three simulators supported the basic 

functions of binding a resolution module via a testbench and resolved HDL conflicts as expected.  However, only 

Simulator A supported doing this on HDL nets defined and connected within the UPF with ‘create_logic_net’ and 

‘connect_logic_net’ commands; Simulators B and C required the nets to be defined within the HDL. 

Since this approach attempts to replace supply net connections normally made via UPF with logic net 

connections, the preferred location for creating these connections would be within UPF – rather than forcing a 

change to the HDL under test.  This limitation in Simulators B and C seems arbitrary and out of sync with the 

expectations of the UPF LRM to allow the creation of new logic nets when needed. 



 

Simulator A Simulator B Simulator C 

Binding worked as expected; logic 

nets created and connected within 

UPF. 

Binding won’t work on UPF-created 

logic nets.  If HDL nets are created 

in original RTL, binding works as 

expected. 

Binding won’t work on UPF-created 

logic nets.  If HDL nets are created 

in original RTL, binding works as 

expected. 

 

 

VII. ANALYSIS & CONCLUSIONS 

Some other general observations can be made from the above results: 

 

• The UPF/HDL resolution vectors ‘vct’ do not seem to be used for resolving drive direction—in spite of the 

fact that they are written and applied with a source/destination direction in mind.  Future UPF revisions 

should seek to take advantage of this information when provided to determine which side of a supply 

net is the source. 

 

• Simulator A was the only simulator to allow bi-directional HDL ports to be connected and used as outputs; 

the other two defaulted the ports to ‘inputs’ in spite of the context of what they were being connected to.  It 

was also the only simulator to fully support the example IEEE1801 custom resolution function as written, 

and it was the only simulator to allow binding connections with UPF-provided logic nets. 

 

• UPF custom resolution functions are difficult to apply because supply nets do not contain a ‘name’ or ‘id’ 

that would allow a user to distinguish between a set of supplies to resolve.  The resulting supply sources of 

‘supply_net_type’ appear only with state and voltage information, and the UPF LRM does not provide an 

explicit definition about the order that supply net connections are maintained in when multiple 

‘connect_supply_net’ commands could each make multiple supply net connections each.   Future UPF 

revisions should make this ordering explicit, or future supply_net_type definitions should include a name 

field that is populated when nets are declared. 

 

VIII. FUTURE STUDY 

This survey was performed with the most contemporary versions of tools available to the author; however, in 

some cases the results could be different in newer releases.  The results should be reviewed with each tool vendor to 

confirm that the behavior seen is consistent with newer releases or if newer versions have a different behavior – 

either by default or with available options. 
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