
Pre-Silicon Verification of Software 
Safety Mechanisms: A Hybrid Approach

SPI and NVDLA case studies 
A. Makram, M. Nabil, M. Nasser, A. Saied, S. Khourshed



Agenda

• Motivation

• Safety Verification Foundation

• The System-Level Gap

• Our SoC Integration Approach – SPI Validation

• NVDLA AI Accelerator

• Performance results

• Future work & QA 



Motivation

• Software Safety Mechanisms verification

• Testing complex software workloads against fault injection

• Speed up for the Fault Injection simulation .



Safety Verification Foundation
What are Random Faults?

• Random Faults due to
• Power Supply Noise​
• Extreme Temperature conditions​
• Electromagnetic Interference (EMI)​

• Modeling Faults in Digital IPs:
• Stuck at zero or one.



Safety Verification Foundation
What Are Safety Mechanisms?

❑ Safety Mechanisms

• HW SMs

• SW SMs

❑ HW safety mechanism 

• Implemented in RTL

• Example:

• Duplication and comparator.

• Triplication and voter.

❑ ALARM

• Interrupt indicating detection of a fault.



Safety Verification Foundation
Software Safety Mechanisms

❑ SW SMs are implemented on the 

CPU as software.

❑ SW safety mechanism 

1. Read after Write

2. Information redundancy

• Checksum

• CRC

3. Monitoring (watchdog timer)



Safety Verification Foundation
Safety Flow

Safe 
Output

1. Safety Analysis
Understanding the failure modes 

resulting from random HW faults to 
guide insertion of safety mechanisms

2. Design for Safety
Mitigating potential failures through the 

insertion of safety mechanisms that 
detect or correct failures

BIST
ECC
CRC

Redundancy
Watchdog

SW Test Lib

Detected

Safety Related Design Safety Mechanism

1
Safety
Analysis

3
Fault
Injection

observed

2 Design for Safety
3. Safety Verification

 Fault injection campaign providing 
evidence to achieve compliance 

(diagnostic coverage)



Safety Verification Foundation
Example for Real SOC

Interconnect

CPU
Cluster

GIC

Memory

GPU
(OpenCL)

IRQs

Other
Peripherals

UART,DMA,ETH

OpenCL Runtime

Applications

Kernel Space

User Space

GPU Driver

Kernel

Kernel Space

System Call Interface



The System-Level Gap

❑Requires Ready RTL for the whole SOC IPs. 
• Several months of delay to the fault campign

❑Long simulation time for SOCs
• +8 hours of Linux booting

❑Longer time for simulating actual and complex software stacks
❑Ex. GPU/NPU workloads



Closing the Gap: Shift Left
Enable Fault injection in Hybrid platform 

QEMU

• Emulated CPU models 
ARM, RISC, X86 …

• No need to RTL of other IPs
• Virtual devices 

• vUART, vETH, 
• Support different OS.

Veloce

• Highly scalable for large designs.
• Full debugging capabilities .
• Full control on the RTL on runtime.

• Fault injection in runtime



Innexis Developer Pro
Base platform

Fault list
-----------
Top.NPU.MAC0.mul_in0[0]  SA0
Top.NPU.MAC0.mul_in0[1]  SA1
.
.
.
.
Top.NPU.RegFile.reg0[1]     SA0

             HOST MACHINE

     EMULATOR

SW Driver/ APP

RTL ARM CPU

Virt. ARM CPU

Interconnect

Hybrid 

Memory

IP

DETECTED

Software controlling 

fault injection

Generated using Questa-one safety analyzer

QEMU



Case Study 1 – SPI Controller

• 82 fault scenarios (stuck-at).

• Aligned results with ISO 26262. 

• Combined SMs→ 96.3% detection.

Fig. 2: SPI Architecture



Case Study 2 – NVDLA

• Nvidia Deep Learning Accelerator.

• Used in Nvidia Jetson.

• Complex software stack to run 
CNNs as Yolo, Lenet and Resnet.

• RTL and Virtual parts.
Fig. 3: Integration of NVDLA with hybrid platform 



Case Study 2 – NVDLA
• FI on different 1500 signal 

and register in the RTL.

• Multiple-point FI:
• 1 fault → 10% accuracy loss

• 32 faults → 95% accuracy loss

• NVDLA demonstrate 
moderate resilience against 
single faults. Accuracy Degradation vs Fault Injection Density



Device discovery

Driver discovery

NVDLA Interrupt check 
 18 interrupts to core 0 during inference.

Read NVDLA ID from RTL

Class 2
Image detected is 2



Performance Results

Fig. 5: Runtime Performance Across Verification Platforms

• 10x speedup over full emulation.

• 1000x speedup over simulation.

• 1000-Fault Campaigns 
• 1 day in Hybrid platform.
• 2 weeks in fully emulated platform.



Performance Results
Comparison with FPGA Approaches

Resources Run Time Manual RTL 
Modifications

Fault Injection
Capabilities

Recompilations
Required

FPGA SOC1 30%
(Limited)

~34ms Manually done Limited Many 
compilations

Hybrid 
approach

0.6% 
(Scalable)

1 min 24 sec No need Full design One compilation

(1) Late Breaking Result: FPGA-Based Emulation and Fault Injection for CNN Inference Accelerators

Comparison based on NVDLA inference on CiFar10 using ResNet18 CNN.



Key Takeaways

• Hybrid approach enables early, accurate software safety 
verification before full SoC availability.

• Implemented SMs aligned with the ISO26262.

• Scales to complex IPs like NVDLA.

• Significant runtime speedup against different verification platforms.

• One-time compilation supports entire safety campaign.



Future Work

• Advanced analysis of AI accelerators against fault injection.

• We would like to try different safety mechanisms.



Thank You

Questions ?

Ahmed Makram
ahmed.makram@siemens.com


	Slide 1: Pre-Silicon Verification of Software Safety Mechanisms: A Hybrid Approach SPI and NVDLA case studies 
	Slide 2: Agenda
	Slide 3: Motivation
	Slide 4: Safety Verification Foundation What are Random Faults?
	Slide 5: Safety Verification Foundation What Are Safety Mechanisms? 
	Slide 6: Safety Verification Foundation Software Safety Mechanisms
	Slide 7: Safety Verification Foundation Safety Flow
	Slide 8: Safety Verification Foundation Example for Real SOC
	Slide 9: The System-Level Gap
	Slide 10: Closing the Gap: Shift Left Enable Fault injection in Hybrid platform 
	Slide 11
	Slide 12: Case Study 1 – SPI Controller
	Slide 13: Case Study 2 – NVDLA
	Slide 14: Case Study 2 – NVDLA
	Slide 15
	Slide 16: Performance Results
	Slide 17: Performance Results Comparison with FPGA Approaches
	Slide 18: Key Takeaways
	Slide 19: Future Work
	Slide 20

