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Motivation

• Software Safety Mechanisms verification

• Testing complex software workloads against fault injection

• Speed up for the Fault Injection simulation .



Safety Verification Foundation
What are Random Faults?

• Random Faults due to
• Power Supply Noise​
• Extreme Temperature conditions​
• Electromagnetic Interference (EMI)​

• Modeling Faults in Digital IPs:
• Stuck at zero or one.



Safety Verification Foundation
What Are Safety Mechanisms?

❑ Safety Mechanisms

• HW SMs

• SW SMs

❑ HW safety mechanism 

• Implemented in RTL

• Example:

• Duplication and comparator.

• Triplication and voter.

❑ ALARM

• Interrupt indicating detection of a fault.



Safety Verification Foundation
Software Safety Mechanisms

❑ SW SMs are implemented on the 

CPU as software.

❑ SW safety mechanism 

1. Read after Write

2. Information redundancy

• Checksum

• CRC

3. Monitoring (watchdog timer)



Safety Verification Foundation
Safety Flow
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Safety Verification Foundation
Example for Real SOC
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The System-Level Gap

❑Requires Ready RTL for the whole SOC IPs. 
• Several months of delay to the fault campign

❑Long simulation time for SOCs
• +8 hours of Linux booting

❑Longer time for simulating actual and complex software stacks
❑Ex. GPU/NPU workloads



Closing the Gap: Shift Left
Enable Fault injection in Hybrid platform 

QEMU

• Emulated CPU models 
ARM, RISC, X86 …

• No need to RTL of other IPs
• Virtual devices 

• vUART, vETH, 
• Support different OS.

Veloce

• Highly scalable for large designs.
• Full debugging capabilities .
• Full control on the RTL on runtime.

• Fault injection in runtime



Innexis Developer Pro
Base platform

Fault list
-----------
Top.NPU.MAC0.mul_in0[0]  SA0
Top.NPU.MAC0.mul_in0[1]  SA1
.
.
.
.
Top.NPU.RegFile.reg0[1]     SA0

             HOST MACHINE
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RTL ARM CPU
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Interconnect

Hybrid 

Memory

IP

DETECTED

Software controlling 

fault injection

Generated using Questa-one safety analyzer

QEMU



Case Study 1 – SPI Controller

• 82 fault scenarios (stuck-at).

• Aligned results with ISO 26262. 

• Combined SMs→ 96.3% detection.

Fig. 2: SPI Architecture



Case Study 2 – NVDLA

• Nvidia Deep Learning Accelerator.

• Used in Nvidia Jetson.

• Complex software stack to run 
CNNs as Yolo, Lenet and Resnet.

• RTL and Virtual parts.
Fig. 3: Integration of NVDLA with hybrid platform 



Case Study 2 – NVDLA
• FI on different 1500 signal 

and register in the RTL.

• Multiple-point FI:
• 1 fault → 10% accuracy loss

• 32 faults → 95% accuracy loss

• NVDLA demonstrate 
moderate resilience against 
single faults. Accuracy Degradation vs Fault Injection Density



Device discovery

Driver discovery

NVDLA Interrupt check 
 18 interrupts to core 0 during inference.

Read NVDLA ID from RTL

Class 2
Image detected is 2



Performance Results

Fig. 5: Runtime Performance Across Verification Platforms

• 10x speedup over full emulation.

• 1000x speedup over simulation.

• 1000-Fault Campaigns 
• 1 day in Hybrid platform.
• 2 weeks in fully emulated platform.



Performance Results
Comparison with FPGA Approaches

Resources Run Time Manual RTL 
Modifications

Fault Injection
Capabilities

Recompilations
Required

FPGA SOC1 30%
(Limited)

~34ms Manually done Limited Many 
compilations

Hybrid 
approach

0.6% 
(Scalable)

1 min 24 sec No need Full design One compilation

(1) Late Breaking Result: FPGA-Based Emulation and Fault Injection for CNN Inference Accelerators

Comparison based on NVDLA inference on CiFar10 using ResNet18 CNN.



Key Takeaways

• Hybrid approach enables early, accurate software safety 
verification before full SoC availability.

• Implemented SMs aligned with the ISO26262.

• Scales to complex IPs like NVDLA.

• Significant runtime speedup against different verification platforms.

• One-time compilation supports entire safety campaign.



Future Work

• Advanced analysis of AI accelerators against fault injection.

• We would like to try different safety mechanisms.



Thank You

Questions ?

Ahmed Makram
ahmed.makram@siemens.com
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