
Portable Stimulus Tutorial

Agenda
Motivation Adnan Hamid – Breker

PSS Introduction Tom Fitzpatrick – Siemens EDA

Developing Reusable Test Content at Block Level Matthew Ballance - AMD

Post-Silicon testing Prabhat Gupta - AMD

PSS new features and conclusion Tom Fitzpatrick – Siemens EDA

Sub-system and SoC–level testing Sergey Khaikin - Cadence

PSS Motivation
Why should UVM Engineers care about PSS

Adnan Hamid

What does the data tell us ?

Source: Wilson Research / Siemens EDA 2020

Largest Functional Verification Challenge

UVM Engineers hold critical corporate knowledge

Only ones to fully understand IP functionality

Key knowledge needed for full chip bring up in simulation / emulation / fpga

Key knowledge needed in firmware development

Only a small number of UVM resources for each IP to help with debug

What if there was a way to capture that corporate knowledge in an abstract,
portable, reusable form

UVM is the standard testbench methodology

 Large library of commercial interface VIPs

Well established RAL register models

Configuration DB IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

UVM Environment

Interface VIPsInterface VIPs Interface VIPsInterface VIPs

UVM does not help with creating test content

Sequences are primarily directed with limited
rand parameters

Scoreboard checkers are manual

Stimulus coverage critical but difficult

 Largely manual, time-consuming work

Hard to scale to large complex blocks or sub-
systems

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

Se
qu

en
ce

s

Sc
or

eb
oa

rd

St
im

 C
ov

er
ag

e

Difficult to randomize scenarios

task my_seq::body();
 repeat (10) begin
 req = my_xtn::type_id::create("req");
 start_item(req);
 assert(req.randomize() with {dst_addr == 48'hffffffffffff;});
 finish_item(req);
 end
 endtask

Difficult to manually synchronize tests across multiple
ports and processor instruction streams

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

Example - Exercise every channel of a DMA concurrently
- Each channel should use non-overlapping random memory addresses
- Each channel transfer mode and size should be randomized
- Every channel should start at the same time

Possible but difficult and not scalable

UVM - Limited support for concurrency,
resource and memory management

Example - Exercise every channel of a DMA concurrently
- Each channel should use non-overlapping random memory addresses
- Each channel transfer mode and size should be randomized
- Every channel should start at the same time

Able to enforce some required relationships

PSS - support for concurrency, resource and
memory management

dma_m2m

dma_init_s

mem_b

dma_chan_r

action dma_m2m {
 input dma_init_s init_i;
 lock dma_chan_r channel;
 input mem_b dat_i;
 output mem_b dat_o;

 constraint dat_o.size == dat_i.size;
 constraint init_i.initial == false;

}

DMA must be initialized before use

Must have exclusive
access to a channel

Another action must
provide source data

This action provides
output data

The ‘m2m’ action
reads and writes

the same amount of data

mem_b

Limited ability to combine scenarios in UVM

 Okay to run IP sequences in parallel (with careful resource partitioning)

 Difficult to create end-to-end multi-IP scenarios

Rigorous, interlinked
test content based on

system scenarios

Nested, complex
specification-based

register/memory map

Advanced VIP with
comprehensive protocol

processing

Function
1

Function
2

Function
3

Function
4

Function
5

Memory

DUT

Data
Agent

Data
Agent

Interrupt
Agent

Interrupt
Agent

Data
Agent

Data
Agent

AXI VIP

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Sequences
Sequences

Control
Scoreboard

Coverage
Model

Data
Scoreboard

M
an

ua
l S

yn
ch

ro
ni

za
tio

n

UVM Sub-System Scaling Barriers

CPU(s)

HW/SW Interface of a Typical SoC

12

AP
B

Sl
av

e Sensors

AP
B

Sl
av

e Sensors

CPU(s)
Sub-

system

AXI /AHB Interconnect Fabric

AP
B

Br
id

ge

AP
B

bu
s

Pr
og

ra
m

m
ab

le

IP

Pr
og

ra
m

m
ab

le

IP

Pr
og

ra
m

m
ab

le

IP

Pr
og

ra
m

m
ab

le

IP

Pr
og

ra
m

m
ab

le

IP

C/C++
Program

Assembly
Slave w/
Memory

Memory

Interrupts Programable
Registers

Full SoC now
requires HW/SW
Interfacing (HSI)
Complex VIPs and
SW/HW Test content

• UVM very hard to use at this level
• No reuse in full chip C-bench (simulation/emulation/post-silicon)

Source: Agnisys 2023

Very complex UVM TB Architectures

 Often bigger code base than design

 Requires expert architecture and support

 No way to reuse captured knowledge

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

Control UVCsSequences

Virtual SequencesScoreboard
Stimulus Coverage

Events & Scheduling

Debug

“Constraint Hell”

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

Clear need for higher level of abstraction

PSS + UVM provides the required abstraction

 More time spent thinking about scenarios

 Less time spent on implementation

 Flows as executable documentation

 PSS can be added into UVM environment
to act as test content generator capability

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

Tool specific realization

PSS Model

SD Read Display
Photo P

Camera
Photo P

SD Write

Whiteboard

What benefits do UVM engineers report?

 40%-60% effort reduction for new test benches (abstract model)

 60%-80% effort reduction for IP revisions (improved reuse)

Great reduction in boring repetitive work

Reduction in debug of complex UVM control flows

Easier to provide tests to other part of flows

Flows as executable documentation

UVM sub-system: Easy Port to Full SoC

16Block Verification

Whiteboard

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

SD Read Display
Photo P

Camera
Photo P

SD Write

PSS Model

Tool specific realization

PSS Model SoC
Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

SoC Verification

• UVM tests may be provided to system team

Seamless reuse across sim/emu/post-si

SoC
Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

SoC

Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

CPUCPU

UVM Testbench

Virtual Platform
Environment

Hybrid Emulation
Environment

Silicon /
Prototyping

Environment

UVM Block
Environment

UVM Testbench

SoC
RTL Memory

DMAC AES

Fabric

Fabric

UART1

VIP

System
and

Power
Control

UART0

VIP

VIP VIP

UART1

VIP

AES

SW Drivers & OSSW Drivers

SD
Sys

DC

PP

Cam
System Model

SD

IP
Model

Tool Specific Realization

Shift Left

SW Drivers

Simulation
Acceleration

Compose

Reuse

Compose

Reuse
PP

End-to-end
Scenarios

What benefits do integration teams report ?

 Streamlined test documentation

 Much better system level coverage

 Great reduction in effort for system level test content

 Ability to stress test end-to-end scenarios w/o involving firmware and software

 Target complex scenarios (e.g. coherency) not easily covered using real workloads

What is PSS?

Tom Fitzpatrick

Methodology Shifts Require New Thinking

• SystemVerilog brought a new approach to Verification
- Standardized features from other proprietary languages
- Directed testing → Constrained-Random

• Constrained-Random requires Functional Coverage to
know what happened

One piece of code
per test

Multiple tests per
piece of code

PSS is Declarative

• Higher level of abstraction
• Consice models
• Describe a much larger set of tests

• Specifies rules to define the set of possible scenarios
• Scheduling constraints between actions
• Data flow requirements between actions
• Data constraints
• Target-specific resource constraints

• Tool generates code to execute on Target Platform
• Each unique solution is effectively a directed test
• May infer action executions to meet rule requirements
• “Overlaying” tests effectively covers the desired test space

Brings Constrained-Random Generation to the Scenario Level

What is a Portable Stimulus Model?

• What does it
do

The
Abstract
Model

• How does it
do what it
does

The
Realization

Layer

Concise Language to Specify Verification Intent

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

Control UVCsSequences

Virtual SequencesScoreboard
Stimulus Coverage

Events & Scheduling

Debug

“Constraint Hell”

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

A complement to UVM, not a replacement

PSS is a stimulus language

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

 Schedule = Activity

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

 Schedule = Activity

 Sequential Data = Buffer
Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

data

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

 Schedule = Activity

 Sequential Data = Buffer

 Parallel Data = Stream
Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

Initialize UART

data

data

data

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

 Schedule = Activity

 Sequential Data = Buffer

 Parallel Data = Stream

 State info = State

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

init?

Initialize UART

data

data

data

UVM Env

Concise Language to Specify Verification Intent

 Behavior = Action

 Schedule = Activity

 Sequential Data = Buffer

 Parallel Data = Stream

 State info = State

 In UVM, PSS can create
a set of sequences
- Run in existing UVM env

Interface VIPsAPB Agent

UART IP

UART Agent

A complement to UVM, not a replacement

Scenario =
{transactions,
configurations,
programming
sequences}

Config UART AgentConfig UART

Agent TX DataRX Data

Agent RX DataTX Data

init?

Initialize UART

data

data

data

UVM Env

Concise Language to Specify Verification Intent

Interface VIPsAHB Agent

DMA IP

A complement to UVM, not a replacement

Interconnect

SRAM

Load Data

dma_xfer0

data

check data

data

Load Data

dma_xfer0

data

dma_xfer1

data

dma_xfer2

data

check data

data

UVM Env

Concise Language to Specify Verification Intent

Interface VIPsAHB Agent

DMA IP

Easier to specify constraints at scenario level

Interconnect

SRAM

Load Data

dma_xfer0

data

dma_xfer1

data

dma_xfer2

data

check data

data

Scenario constraints:
dma_xfer0.src == load.dest;
check.src == dma_xfer2.dest;
… Action constraints:

src.size == dest.size;
src.size <= 64;

Object constraints:
size in [16..128];

Constraints are composable
All relevant constraints are applied across the activity
Can be considered rules for scenario generation

UVM Env

Concise Language to Specify Verification Intent

Interface VIPsAHB Agent

DMA IP

Rules allow scenarios to be inferred from partial specification

Interconnect

SRAM

dma_xfer

Load Data

dma_xfer0

data

dma_xfer1

data

data

check data

data

Load Data

data

UART Rcv

data

dma_xfer1

data
UART IP

UART Agent AHB Agent

UART Rcv

UVM Env

Concise Language to Specify Verification Intent

Embedded C Test

DMA IP

Scheduling built into generated test regardless of target

Interconnect

SRAM

Load Data

dma_xfer0

data

dma_xfer1

data

dma_xfer

data

check data

data

Load Data

data

UART Rcv

data

dma_xfer1

data
UART IP

UART Agent AHB Agent

The Rubber Meets the Road

The Abstract Model must be
implemented on different targets

Atomic Actions → target code
• Target code modeled in exec blocks

Generator assembles target code
according to Activity schedule

Action

Exec Block

dma_xfer

Exec Blocks Define the Target Implementation

dma_xfer

SV C

Target Templates Define 1:1 Mapping

SV C

Template includes target code
with “holes” for generated values

Generated code takes the
template as-is and fills in the holes

Target templates require a separate exec block for each target language
Managed in PSS via inheritance or extension

Exec Blocks Define the Target Implementation

dma_xfer

PI arg1

Procedural Interface Isolates Exec Block from Target Language

Procedural Interface defines functions
that map to functions(/tasks) in the

target language.
Values passed as arguments

Still have to define possibly complex
algorithms in each target language

Procedural Interface lets you have one exec block per action type
Simplifies PSS code management

arg2

SV C

Exec Blocks Define the Target Implementation

dma_xfer

PC

Procedural Constructs Move Complex Flow Control to PSS

Algorithm is specifed in exec block
Imported methods called accordingly

Complex control flow generated from PSS
Language-specific code is much simpler

Procedural Constructs provide maximum reuse by
simplifying the migration between languages

SV C

PSS Generalized Tool Flow

Gen-time or Run-time

Scenario model
+ Constraints

PSS
Model

PS
S

C
om

pi
le

r
Solved Model

Constraint
Solver

Test
Generator

AXI
VIP

UART DDR
MEM

DMAC

UART
VIP

AXI
VIP

UVM
Sequences

UVM Testbench

TB
AXI
VIP

UART DDR
MEM

DMAC

UART
VIP

CPU

Transaction
Sequences

C-testSync

SoC Testbench

SV/UVM

Generated Code Assembled According to
Activity Schedule

action
exec

action

action action

exec

exec exec

action
exec

C Code

SV/UVM C Codeaction
exec

action

action action

exec

exec exec

action
exec

Developing Reusable Test Content at Block Level

Matthew Balance

PSS Test Content at Block-IP level
Goals and Requirements
• Create reusable content for IP consumer teams to use

• Initialize IP in specific modes
• Exercise key IP operations

• Exercise key configurations as requested by consumer team
• Collect coverage metrics to confirm

• Test content must run in UVM and embedded-software environments

Benefits to the Block-level Testing
• More-easily create complex scenario-level tests
• Shared medium to discuss test scenarios with other teams

• Architecture, SoC DV, firmware, driver, validation, etc

PSS Modeling and Realization
 Modeling

- Capture the ‘what’ of a test
- Capture relationships and requirements

 Realization
- How do we carry out behavior?
- What functions to we call?
- What values (from the modeling layer) to we pass?

 Data selected in the Modeling layer used in
Realization

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

cregs.src_addr.write_val(addr_value(dat_i.mem_h));
cregs.dst_addr.write_val(addr(value(dat_o.mem_h));
cregs.sz.write_field(“TOT_SZ”, dat_i.size);

cregs.status.write_field(“EN”, 1);

while (cregs.status.read().DONE == 0) {
 yield;
}

Simplifying Register Programming with a RAL
 Register Access Layers exist to simplify reading/writing registers and avoid mistakes

- Define mnemonics for registers and fields, so we don’t have to remember addresses and bit positions

 Most methodologies have one or more RAL
- C/C++ -- structs, unions, macros
- UVM – UVM register model
- PSS – PSS register-access layer

 Most device-specific RALs are generated from a higher-level description

void init_uart(char *regs, char bits,
 char stop, char pen, char pev) {
 regs[3] = ((bits-5) | stop << 2 |
 pen << 3 | pev << 4);
}

void init_uart(uart_regs *regs, char bits,
 char stop, char pen, char pev) {
 uart_lcr_reg val;
 val.bits = (bits-5);
 val.stop = stop;
 val.parity_en = pen;
 val.parity_even = pev;
 regs->lcr = val;
}

PSS RAL Overview

 PSS defines data types for capturing a RAL in the Core Library

 The PSS RAL targets the requirements of bare-metal software tests
- Light-weight, intended to enable tools to scale to huge register maps

 The RAL for an IP is easily reused in a larger system context
- Self-contained and addressed relative to its parent

 Provides access methods that simplify programming-sequence creation
- Read/write by integer value
- Read/write by bitfield view
- Read/modify/write operation to update fields with compact code

Defining PSS Register Layout
 PSS packed struct specifies register field layout

- Specify width of each field
- Position specifies the offset within the register

 PSS register group collects registers
- Contains reg fields defined in terms of packed structs
- Implements a function to map fields to relative offsets

 PSS RAL types are defined in the PSS Core Library

struct uart_ctrl_ua_mr_reg_s : packed_s<> {
bit[1] cclk;
bit[2] chrl;
bit[3] par;
bit[2] nbstop;
bit[2] chmode;
bit[1] clks;
bit[1] irmode;
bit[20] reserved;

}

pure component uart_ctrl_regs : reg_group_c {
reg_c<uart_ctrl_ua_cr_reg_s,READWRITE,32> ua_cr;

 reg_c<uart_ctrl_ua_mr_reg_s,READWRITE,32> ua_mr;

 pure function bit[64] get_offset_of_instance(string name) {
 if (name == "ua_cr“) return 0x0;

if (name == "ua_mr") return 0x4;
 }
}

Reading/Writing Registers with the PSS RAL
 PSS registers provide several read/write APIs

 Single-call read-write-modify simplifies programming sequences

rand bit[2] stop_bits;
constraint stop_bits == 2;

exec body {
ua_mr_reg_s mr_reg_temp;

mr_reg_temp.par = 1;
mr_reg_temp.nbstop = stop_bits;
mr_reg_temp.chmode = 0;

// Write Mode Register
comp.regs.ua_mr_reg.write(mr_reg_temp);

}

Register Access Function Purpose

void write(packed_s reg_struct) Write register struct

packed_s read() Read register struct

void write_val(bit[SZ] reg_value) Write register value

bit[SZ] read_val() Read register value

Register Access Function Purpose

void write_masked(R mask, R val) Masked write of a struct

void write_val_masked(bit[SZ] mask, bis[SZ] val) Masked write of a integer

void write_field(bit[string name, bit[SZ] val) Write a named field

void write_fields(list<string> names,
list<bit[SZ]> vals)

Write a set of named fields

rand bit[4] mode;
rand bit[16] coeff;
exec body {
 comp.regs.cr.write_fields(
 {"mode", "coeff"}, // field names
 {mode, coeff}); // values
}

How is a PSS RAL Created?
 We could hand-type, of course…

 But, many tools exist to help

IP-XACT

SystemRDL

Custom
(CSV, XML)

Register
Automation

Tool

RTL

PSS

UVM

Docs

Etc…

Modeling: IP Behavior - Initialization
 Nearly all IPs need to be initialized before use

- DMA needs to configure channels and interrupts
- UART needs to set baud rate, etc

 Typical to use a state object to store initialization data
- Accessible by any action using the IP component
- Prevents changes to the initialized mode while the IP is in use

 Want to provide a variety of initialization actions
- Full-random initialization
- Fully-fixed ‘sanity’ initialization
- Fixed along specific axes, etc.

uart_init

uart_init_s

action uart_init {
 output uart_init_s init_o;

 // ...
}

state uart_init_s {
 rand bit[4] in [5..8] bits;
 rand bit stop;
 rand bit parity_en;
 rand bit parity_even;
 rand bit[32] in
 [9600,19200,38400,115200] baud;
}

Test Realization: UART Register Definitiion
 Focus on what we need for initialization

- Mostly the line-control register (LCR) struct lcr_s : packed_s<> {
 bit[2] bits; // 5=0 ... 8=3
 bit stop;
 bit parity_en;
 bit parity_even;
 bit[3] rsvd;
}

pure component uart_regs_c : reg_group_c {
 reg_c<bit[8]> rxtx_b;
 reg_c<ier_s> ier;
 reg_c<iir_s> iir;
 reg_c<lcr_s> lcr;
 reg_c<bit[8]> dlab0;
 reg_c<bit[8]> dlab1;
 // ...
}

Define layout of fields within the
register

Specify layout of registers within
the UART

Test Realization: Programming Sequence
 Programming sequence is simple and compact

- Translate from selected config mode to registers

component uart_c {
 ref uart_regs_c regs;
 int SYSCLK_FREQ = 50_000_000;

 action uart_init {
 output uart_init_s init_o;

 exec body {
 // Initialize UART mode
 comp.regs.lcr.write({
 .bits = (init_o.bits-5),
 .stop = init_o.stop,
 .parity_en = init_o.parity_en,
 .parity_even = init_o.parity_even
 });
 bit[32] div =
 comp.SYSCLK_FREQ/(16*init_o.baud);
 comp.regs.dlab0.write_val(div[7:0]);
 comp.regs.dlab1.write_val(div[15:8]);
 }
 }
}

state uart_init_s {
 rand bit[4] in [5..8] bits;
 rand bit stop;
 rand bit parity_en;
 rand bit parity_even;
 rand bit[32] in
 [9600,19200,38400,115200] baud;
}

Program mode settings

Calculate the divider settings and
program the registers

Modeling: Specialized Initialization Actions
 The base UART initialization action is fully-random

- Can select any combination of values

 Typically, there is a set of common modes in which to initialize an IP

 Define these as specializations of the base (fully-random) initialization action
- Some with fully-specified parameters
- Others with some variability

 Automatically reuse register-programming sequence defined in the base action

action uart_init_sanity : uart_init {
 constraint init_o.baud == 9600;
 constraint init_o.parity_en == 0;
 constraint init_o.bits == 8;
 constraint init_o.stop == 1;
}

action uart_init_n81 : uart_init {
 constraint init_o.parity_en == 0;
 constraint init_o.bits == 8;
 constraint init_o.stop == 1;
}

Modeling: Requiring Initialization
 Encoding pre-conditions is a key aspect of creating reusable test content

- In this case, that the IP must be initialized, possibly in a specific mode

 PSS state objects allow us to require IP initialization before use
- Initialization actions set the state to non-initial
- Behavior actions require a non-initial state

 PSS tools detect if we attempt to use an IP before initialization
- Randomly infer a valid initialization action
- Report an error if no initialization action exists to be inferred

uart_tx

action uart_tx {
 input uart_init_s init_i;
 input mem_b dat_i;

 constraint !init_i.initial;
}

mem_b
uart_init_s

Requires at least one initialization
action to run before this action

Methodology: Factoring Out Commonalities

 It’s likely that all of our behavior actions depend on a properly-initialized IP

 It’s good practice to factor out core requirements like this to an abstract base action
- Abstract means that the action is just a building block, and won’t independently

action uart_tx {
 input uart_init_s init_i;
 input mem_b dat_i;

 constraint !init_i.initial;
}

abstract action uart_base {
 input uart_init_s init_i;

 constraint !init_i.initial;
}

action uart_tx : uart_base {
 input mem_b dat_i;

}

action uart_rx : uart_base {
 output mem_b dat_o;

}

. . .

Placing Requirements on Initialization Mode

 Thus far, we have just required the IP is initialized
- Any randomly-selected initialization mode is okay

 Often, we also need it to be initialized in some specific way

 Constraining the initialized state adds a requirement
- Must initialize in high-speed mode to test large data transfer

action uart_tx_huge : uart_base {
 input mem_b dat_i;

 constraint dat_i.size >= 256*1024;
 constraint init_i.baud >= 115200;
}

Initialization Coverage - UART

 One of our block-level deliverables is
coverage of key initialization modes

 PSS covergroups collect coverage metrics

 Covergroups are sampled automatically
- E.g., at the end of action execution

 Can predict coverage before tests run
- Coverage is on stimulus – fully under our control
- Shortens time to identify and close coverage holes

action uart_init {
 output uart_init_s init_o;

 covergroup {
 baud_cp : coverpoint init_o.baud;
 bits_cp : coverpoint init_o.bits;
 baud_bits_cr : cross baud_cp, bits_cp;

 parity_en_cp : coverpoint init_o.parity_en;
 parity_even_cp : coverpoint
 init_o.parity_even
 iff (init_o.parity_en);
 parity_cr : cross
 parity_en_cp,
 parity_even_cp iff (init_o.parity_en);

 } uart_init_cov;
}

DMA Behavior – Single DMA Transfer
 Our simplest DMA operation is a memory-to-memory copy

- It copies memory from a source memory block to a destination

 Memory-to-memory pre-conditions
- DMA IP must have been initialized
- Action must have dedicated access to a DMA channel
- Action must be supplied source memory block to read

 Memory-to-memory post-conditions
- Memory-to-memory operation produces a destination memory block

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

PSS Action Outline
 Our PSS ‘memory-to-memory’ action captures these requirements

 And, enforces some required relationships

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

action dma_m2m {
 input dma_init_s init_i;
 lock dma_chan_r channel;
 input mem_b dat_i;
 output mem_b dat_o;

 constraint dat_o.size == dat_i.size;
 constraint init_i.initial == false;

}

DMA must be initialized before use

Must have exclusive
access to a channel

Another action must
provide source data

This action provides
output data

The ‘m2m’ action
reads and writes

the same amount of data

Modeling: Claiming Memory
 The mem-to-mem action produces a block of memory

- Memory is allocated via a memory claim within the memory buffer
- The newly-created memory block is passed out via the output memory buffer

 Claimed memory is automatically allocated and freed
- Ensures parallel activity uses unique memory regions
- Avoids memory leaks

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

buffer mem_b {
 rand bit[32] size;
 addr_handle_t mem_h;
 rand addr_claim_s<> mem_claim;

 constraint mem_claim.size == size;
 exec post_solve {
 mem_h = make_handle_from_claim(mem_claim);
 }
}

• Org-common library
• Think about consumer team
• Data producer?
• Accellera-std library in the works

Test Realization – DMA Single Transfer
 We can now implement the connection between action-level model and device registers

 Easily specify programming seq
- Standard control-flow statements
- Register- and memory-access methods

action dma_m2m {
 input mem_b dat_i;
 input dma_init_s init_i;
 lock dma_chan_r channel;
 output mem_b dat_o;
 // ...
 exec body {
 ref channel_regs cregs =
 comp.regs.channels[channel.instance_id];

 cregs.src_addr.write_val(addr_value(dat_i.mem_h));
 cregs.dst_addr.write_val(addr(value(dat_o.mem_h));
 cregs.sz.write_field(“TOT_SZ”, dat_i.size);

 cregs.status.write_field(“EN”, 1);

 while (cregs.status.read().DONE == 0) {
 yield;
 }
 }
}

Get the channel registers for the
target DMA channel

Integer values can be written to
registers

Individual fields can be updated
with read-modify-write operations

Wait for transfer completion

Modeling: Encapsulating Complex Behaviors
 IP operations often involve multiple steps that, as a group

- Place internal and external requirements around memory lifetime
- Place temporal requirements on resource availability

 PSS enables encapsulating these behaviors with their requirements
- Ensures that the behaviors are internally consistent
- Ensures that usage is consistent with requirements

 Goal is to deliver easy-to-use behaviors
- Expose top-level ‘knobs’ to enable control
- Hide details from end users

Modeling: Encapsulating Complex Behaviors
 The DMA Engine supports chained transfers via in-memory descriptors

- Each descriptor performs a copy between memory regions
- Descriptors ‘linked’ together into a descriptor chain
- Descriptor-chain memory must be valid for the duration of the transfer
- Data in source regions must be valid before transfer starts
- Data in destination regions is only legal once the full transfer completes

 Goal: encapsulate task of creating and running a chained transfer
- Capture requirements around memory usage and lifetime
- Capture programming sequence for descriptor setup and transfer
- Provide a simple action to produce chained transfers of various lengths

descN

desc2..

desc1

srcN dstN

src2 dst2

src1 dst1

dma_chained_xfer
len

Modeling: Building a Descriptor Chain
 Key operation: add descriptor to the chain

 Two possibilities
- Add last descriptor -- ‘next’ pointer points to null
- Add non-last descriptor – ‘next’ pointer points to previous

 Key data: last descriptor pointer and accumulated memory blocks
- Model with a buffer

 Two actions:
- Initialize chain (marks end of the chain)
- Add new descriptor

dma_chain_end

dma_chain_add

descN

desc2..

desc1

srcN dstN

src2 dst2

src1 dst1

dma_chain_add

src

dst

dma_chain_init

chain

chain

dma_chain_add

src

dst

chain

dma_chain_add

src

dst

chain

Modeling: DMA ‘chain’ buffer

 The descriptor chain is built starting at the end
- First descriptor built is the tail of the chain
- Last descriptor built is the head of the chain processed by DMA

 Must manage two things while building the transfer
- Handle to the previously-build descriptor

- “next” descriptor for the DMA engine to process

- Handle to memory regions used by the transfer
- Prevents them from being freed until they’ve been used

 Encapsulate this data in a buffer
- list to hold memory handle
- address handle pointing to the next descriptor

- Or, null, if at the end of the chain

buffer dma_chain_b {
 list<addr_handle_t> mem_h;
 addr_handle_t next_desc;
}

dma_chain_end

dma_chain_add

descN

desc2..

desc1

srcN dstN

src2 dst2

src1 dst1

Modeling: Add-Descriptor Action
 The add-descriptor action

- Claim source, destination, descriptor, memory
- Propagates the ‘chain’ buffer data

 Remember: just setting up the transfer
- The full chained transfer runs later

action dma_chain_add {
 input chain_b chain_i;
 output chain_b chain_o;
 input dat_b dat_i;
 output dat_b dat_o;
 rand addr_claim_s<> desc_claim;
 addr_handle_t desc_h;

 constraint desc_claim.size ==
 sizeof_s<dma_desc_s>::nbytes;
 constraint dat_i.size == dat_o.size;

 exec post_solve {
 desc_h = make_handle_from_claim(desc_claim);
 chain_o.next_desc = desc_h;

 chain_o.mem_h = chain_i.mem_h;
 chain_o.mem_h.push_back(desc_h);
 chain_o.mem_h.push_back(dat_i.data_h);
 chain_o.mem_h.push_back(dat_o.data_h);
 }
}

Specify relationships around
allocated memory

Update descriptor-chain ‘head’
and ‘previous’ references

Save all address handles to
extend their lifetime to the end of

the transfer

Test Realization: Descriptor Packed Struct

 Represent in-memory descriptors with packed structs

 Use to model DMA-descriptor memory
struct dma_desc_csr_s : packed_s<> {
 bit[12] sz;
 bit[4] rsvd1;
 bit dst, src;
 bit inc_dst, inc_src;
 bit eol;
}

struct dma_desc_s : packed_s<> {
 dma_desc_csr_s csr;
 bit[32] src_addr;
 bit[32] dst_addr;
 bit[32] next;
}

Model subfields when needed

Combine with fields of other
fixed-size data types

Test Realization: Populating Descriptor Chain Link

 Populate DMA ‘desc’

 Write to memory

action dma_chain_add {
 input chain_b chain_i;
 output chain_b chain_o;
 input dat_b dat_i;
 output dat_b dat_o;
 rand addr_claim_s<> desc_claim;
 addr_handle_t desc_h;

 // ...
 exec body {
 dma_desc_s desc;
 desc.sz = dat_i.size;
 desc.src_addr = addr_value(dat_i.data_h);
 desc.dst_addr = addr_value(dat_o.data_h);
 desc.csr.eol = (chain_i.next_desc == null)?1:0;
 desc.next = (chain_i.next_desc == null)?
 addr_value(chain_i.next_desc):0;

 write_struct(desc_h, desc);
 }
}

Populate transfer size and src/dst
addresses

Populate next-descriptor pointer

Write descriptor to memory

Test Realization: Running Chained Transfer

 Many similarities to single-transfer

 Start and poll for completion via registers

action dma_run_chain {
 input chain_b chain_i;
 lock dma_chan_r channel;

 exec body {
 ref channel_regs cregs =
 comp.regs.channels[channel.instance_id];

 cregs.desc.write_val(
 addr_value(chain_i.next_desc));

 cregs.status.write_fields(
 {“USE_ED”, “EN”}, {1, 1});

 while (cregs.status.read().DONE == 0) {
 yield;
 }
 }
}

Get handle to channel-specific
registers

Specify the head of the descriptor
chain

Enable the DMA channel in
‘external descriptor’ mode

Wait for transfer to complete

Modeling: Encapsulating Transfer-Chain Building
 Now, let’s create the reusable ‘descriptor-chain transfer’ action

action dma_chained_xfer {
 rand bit[32] in [1..256] len;

 activity {
 H: do dma_chain_init;

 replicate (i : len) D[]: {
 if (i > 0)
 bind D[i-1].A.chain_o
 D[i].A.chain_i;
 A: do dma_chain_add;
 }

 bind H.chain_o D[0].A.chain_i;

 T: do dma_run_chain;
 bind D[len-1].A.chain_o T.chain_i;
 }
}

Execute init-chain action

Create the selected number of
descriptors

Execute the ‘perform-transfer’
action dma_run_chain

dma_chain_init

dma_chain_add

chain src

dst

dma_chain_add

chain
src

dstchain

dma_chained_xfer
len

Modeling Wrap-up: IP-centric PSS Component
 We’ve been focused on the IP behaviors

- Modeling pre-conditions and requirements
- Modeling test realization targeting memory and registers

 We encapsulate those behaviors (actions) with required IP resources in a component
- Reference to the IP register group
- Pool of resources
- state pool that holds the current initialized state

 IP component is independent of integration level
- Same at IP, subsystem, and SoC

 Environment-specific details go in the containing component

component dma_c {
 ref dma_regs_c regs;
 dma_chan_r [4] channels;
 pool dma_init_s init_s;

 action dma_m2m { /* ... */ }
}

PSS Environment Integration
 Every verification environment has specific characteristics

- Memory map
- Mechanism used to access memory
- …

 Collect these specifics in a top-level PSS component
- Ensures that IP-specific component is environment-independent component pss_top {

 transparent_addr_space<> aspace;
 // ...
 dma_c dut;

 dma_regs_c regs;

 exec init_down {
 dut.regs = regs;
 }
}

Env-specific register block

Connecting IP register reference
to env-specific register block

IP-specific PSS component

Connecting PSS to a SystemVerilog Testbench
 Programming sequences interact with IPs via memory and memory-mapped registers

 PSS defines a standard set of read/write routines for accessing memory
- May be called directly by user-defined test realization
- Called indirectly when user-defined test realization reads/writes registers

 Implement these read/write functions in terms of target environment

 Direct to BFM
- Implement read/write methods in terms of your BFM API

 Connect to UVM Reg at address level
- Implement read/write methods by calling UVM register-model API

UVM
AgentRegister

Adapter

PSS Test
readX
writeX

PSS
Mem API

Agent
Seq/Seq Item

Seqr

UVM
Reg Model

PSS at IP-Block Level: Summary
 Captured

- Test content to Initialize our IPs
- Test content to exercise key behaviors
- Register-access layer to interact with IP registers
- Rules that document our actions’ requirements

 Behaviors capture requirements for their execution
- IP must be initialization before use
- Resources required by each behavior
- Memory required by each behavior

 Requirements Capture+Test Realization = Portability
- Can automatically detect missing requirements (eg missing initialization)
- PSS processing tools can infer an action to satisfy the requirement
- Requirements provide automatic documentation

dma_m2m

dma_init_s
mem_b

mem_b

dma_chan_r

Sub-system and SoC–level testing with PSS

Sergey Khaikin

PSS Beyond Block IP: History and Future

 PSS 2.1 opens new opportunities for SoC !
- Coreless environments

- customization of write and read primitives enable
driving transactors and BFMs

- Shift left
- addr_reg_pkg features enable register-based device

programming when driver SW is not yet available

- Virtualization
- addr_value()customization and memory region tagging

enable modeling of address translation mechanisms

SoC and Subsystem-level
Applications of PSS

Block/IP-level
Applications of PSS

 SoC-level was a classic application of PSS in the early days
- Embedded-C, bare metal SW-driven verification
- Abstract behavioral models layered on top of driver APIs
- Tape-out proven with initial industry adoption circa 2018

PSS for SoC / Sub-system: Goals and Requirements
 Focus on integration aspects that are often custom in SoC designs

- HW/FW logic that is prone to bugs
- Not verified in lower-level environments

- Some aspects of desired behavior not explicitly covered in formal specs
- Subject to “soft” issues, such as overall power consumption and performance, not just clear-cut functional bugs

- Capture and drive System-Level Functional Coverage metrics

 Typical examples of PSS test content at SoC and Sub-system levels:
- SoC integration: coalesce unit tests into cross-IP flows to exercise data paths and system concurrency

- Can be instrumented for performance measurements

- Power management and chip bring-up: exercise IP power-cycle sequences and SoC boot flows
- Generate directed-random sequences of power state transitions on cores/clusters and IPs/subsystems
- Cross power-related flows with functional “traffic” tests: archetype of system use-cases

- Additional SoC-level aspects: exercise interrupt controllers, chip frequency switching …

Test Content for SoC / Sub-system: Challenges
 Facilitate portability across diverse execution platforms

- Simulation: coreless with BFMs or processor-driven
- Fast platforms (emulation): coreless with transactors/AVIPs or processor driven
- Post-Si: Silicon board, ATE testers - processor driven

Quickly initialize required IPs

Generate complex and valid cross-IP traffic patterns
- Parallel traffic avoiding resource conflicts
- Memory allocation management

 Accommodate changes in register memory maps

 Prove coverage of key concurrent behaviors

 Unify scenario space model across all testing environments
- Reuse abstract test content on transition from register to driver-based testing

Assembling PSS View of a Modern SoC Design:
From Vision to Deployable Methodology and Production Use

Sub-System
Level
Models

SoC
Model

IP-Level
Models

component SS_A{
 IP_uart uart;
 IP_dma dma;
}

component IP_uart {
 action init{}
 action config{}
 action tx{}
 action rx{}
}

component IP_dma {
 resource chnl{}
 …

}

component SS_B {

}

component SS_X {

}

component pss_top {
 SS_A a;
 SS_B b;
}

Multi-platform
Target Execution
Environment

Virtual Platform Simulation Emulation FPGA Silicon Board

Test Realization Layer

Typical PSS environment:
- Hierarchy of abstract models – SoC, SubSys, IP
- Residing on top of Test Realization Layer

PSS is agile - any modeling approach is viable!
Top-to-Bottom, Bottom-to-Top or “somewhere in between”
Next slides describe roles and interaction of these layers

SoC - Level
PSS model

Scenario building blocks and rules
• Power-up and IP initialization rules
• Basic IP scenarios – initialization, configuration, traffic
• Cross-IP traffic scenarios

SoC – Level
PSS Use-Cases

Real-world scenarios
• system traffic concurrency
• performance
• power
• cache coherency

PSS Modeling of SoC - Top to Bottom approach
 PSS models formally span Test Spaces

- Rules of the game
- Participating entities, actors and their properties
- Behaviors, their properties and dependencies

Structural entities
• Subsystem models
• IP models

 PSS activities traverse Test Spaces
- Specific Plays within the game

- Interesting use-cases, per Test Plan
- Naturally map onto System-Level Coverage Goals

Multi-platform Target Execution Environment

IP and SubSystem Models

Test Realization Layer

PSS Modeling mindset
 Focus on formally spanning test space of SoC
 Use PSS activities to describe Use-Cases per test-plan
 Capture key, imperative testing aspects as PSS coverage goals

Modeling cross-IP flows at SoC Level
// DMA IP-level unit test
action single_dma_xfer_descr {
 activity {
 sequence {
 do psm_memory_ops_c::write_data ;
 do dma_c::descr_xfer;
 do psm_memory_ops_c::read_check_data;
 }
 }
}

// UART IP-level unit test
action uart_tx_rx {
 activity {
 sequence {
 parallel {
 do uart_c::tx_uart_data;
 do uart_vip_c::vip_uart_receive; }
 parallel {
 do uart_c::rx_uart_data;
 do uart_vip_c::vip_uart_transmit;
 }
 }
 }
}

// SoC – level Use-Case
action test_uart_with_dma {
 activity {
 schedule {
 do dma_c::single_dma_xfer_descr;
 do dma_c::uart_tx_rx;
 }
 }
}

UART unit test

 DMA unit test

Solve for legal,
random
scheduling of
sub-activities.
Perform resource
and memory
allocation, assign
programming
cores

write_data

alloc_first_descr

chained_xfer

chained_xfer

chained_xfer

read_check_data

init_uart

config_uart vip_uart_config

tx_uart_data vip_uart_recieve

rx_uart_data vip_uart_transmit

Inferred actions

IP-Level
PSS models

PSS Modeling of SoC – Let There be IP !
SoC – Level
Model

Real-world scenarios
• system traffic concurrency
• performance
• power
• cache coherency

Specify IP connectivity, resources, SW contracts
• Object pools and action bindings
Capture IP Configuration aspects
Describe unit-level use cases and behaviors
• Init, config, traffic …

Scenario building blocks and rules
• Power-up and IP initialization rules
• Basic IP scenarios – initialization, configuration, traffic
• Cross-IP traffic scenarios

Multi-platform Target Execution Environment

Test Realization Layer

Test Realization Layer Interface
• exec blocks
• device programming sequences
• instantiate RAL

Moving on to development of IP-level models
PSS modeling mindset remains the same!

 Focus on formally spanning test spaces of each IP
 Use PSS activities to describe IP Use-Cases per test-plan
 Capture key, imperative testing aspects as PSS coverage goals

component dma_c {
 resource chnl_r {}
 pool [NUM_CHANNELS] chan_r;
 action descr_xfer { lock chnl_r chnl; …}
 // DMA IP-level unit test
 action single_dma_xfer_descr {
 // Compound activity scope refines use case details
 activity {
 sequence {
 do psm_memory_ops_c::write_data;
 do dma_c::descr_xfer;
 do psm_memory_ops_c::read_check_data;
 }
 }
 }
}

IP-Level
PSS models

IP_1 [detailed model]

compound
actions

atomic actions

exec bodies
RAL

flow object
definitions

resource object
definitions

IP config data

IP_1 [“vector” model]

atomic actions

exec bodies

IP_N

flow object pools

resource pools

flow object
definitions

resource object
definitions

PSS Modeling of SoC – Devil is in the Detail …Really?

Describe unit-level use cases and behaviors
Init, config, traffic …
exec blocks, device programming
Specify IP connectivity, resources, SW contracts
Object pools and action bindings
Capture IP Configuration aspects
Instantiate RAL

IP models level may vary in level of detail: coarse, abstract fine-grained, detailed

component dma_c {
 // Import “vector” test functionality
 target function void single_dma_xfer_test();
 import function single_dma_xfer_test;
 // DMA IP-level unit test:
 action single_dma_xfer_descr {
 // Atomic action–simply invoke a test vector
 exec body {
 single_dma_xfer_test();
 }
 }
}

write_data

alloc_first_descr

read_check_data

chained_xfer

chained_xfer

chained_xfer
single_dma_xfer_descr

SoC team uses IP test vectors, provided by IP teams
• “test vectors” - existing tests in C or SV
• supplied as precompiled binaries or source C code
Pros:
• Leverage basic PSS for SoC-level scenario composition
• Cheap and quick to deploy (nobody owns IP models)
Cons:
• Limited controllability (vector tests are monolithic)
• Hard to inter-operate with other unit tests

SoC team owns IP level models
Pros:
• Leverage full power of PSS - better

controllability and inter-operability with other
unit tests

Cons:
• No benefit for IP teams
• Higher upfront investment for SoC team

IP teams own IP level models,
reused by SoC team

Pros:
• Leverage full power of PSS
• Benefits IP teams as well
Cons:
• Upfront investment for IP teams

Methodology - Who Owns PSS IP-level Models

IP-Level
PSS models

IP_1 [detailed model]

compound
actions

atomic actions

exec bodies
RAL

flow object
definitions

resource object
definitions

IP config data

IP_1 [“vector” model]

atomic actions

exec bodies

IP_N

flow object pools

resource pools

flow object
definitions

resource object
definitions

Describe unit-level use cases and behaviors
Init, config, traffic …
exec blocks, device programming
Specify IP connectivity, resources, SW contracts
Object pools and action bindings
Capture IP Configuration aspects
Instantiate RAL

IP ownership methodology choice depends on project phase and degree of PSS technology adoption across different teams

initial adoption of PSS

Widening adoption of PSS

Company-wide adoption of PSS

Assembling PSS View of SoC Design -
The Full Picture

Multi-platform
Target Execution
Environment

Virtual Platform Simulation Emulation FPGA Silicon Board

Platform
Integration
Layer

Test
Realization
Layer

PSS Core
Library

Sub-System
Level
PSS models

SoC - Level
PSS model

Methodology
Library

PSS models drive behaviors, represented by leaf-level
actions in test case scenarios.
It is done by layering exec body code of these actions
on top of APIs, available in the execution environment

 SV/UVM sequences
 Transactor C APIs
 BFM SV and C APIs

 Test Build, load, boot
 IPC + synchronization
 Message logging
 Runtime error handling

Separates high-level test intent
from the details of how
it is implemented in specific
execution platform

 Custom VIP APIs
 C F/W Libraries
 MMIO regions

 Representation of execution contexts
 Executor-based customizations
 Memory Management and allocation
 Representation and access to registers

 Randomization
 File Operations
 Error reporting
 Floating point

Standard portable functionality and utilities
for common PSS applications

A library of PSS types, actions and objects
• Accelerates tests creation
• Interoperates with other PSS models
• Constitutes a framework for reuse

 Common memory buffer objects
 Design Configuration Management
 PSS reg methodology
 Memory Management methodology

IP-Level
PSS models

Describe unit-level use cases and behaviors
• Init, config, traffic …
• exec blocks, device programming
Specify IP connectivity and resources
• Object pools and action bindings
Capture IP Configuration aspects
Instantiate RAL

Domain-
Specific
Libraries

Out-of-the box PSS VIP
• Content
• Coverage

 PCIe traffic library
 CXL traffic library
 Cache coherency verification
 RiscV
 ARMv9

Instantiate / configure IP and library models
Construct higher-level, cross-IP PSS scenarios

Instantiate / configure Sub-System, IP and library models
Construct SoC-level PSS scenarios

component SS_A{
 IP_uart uart;
 IP_dma dma;
}

component IP_uart {
 action init{}
 action config{}
 action tx{}
 action rx{}
}

component IP_dma {
 resource chnl{}
 …

}

component SS_B {

}

component SS_X {

}

Facilitate portability
across diverse
execution platforms

component pss_top {
 SS_A a;
 SS_B b;
}

PSS enables easy test creation for highly parallel, hard-to-schedule scenarios

TB

SoC

USB
controller

USB
VIP

CPU

Bus

GPX Audio

Display
controller

Camera
controller

CPUCPUCPU
DDR Controller

DMA MODEMSRAM

Speaker Microphone

PSS
Model

// Video SoC-level test
action video_scenario {
 activity {
 do camera_c::capture;
 do dma_c::transfer;
 do gpx_c::decode_to_display;
 do display_c::show;
 }
}

// Audio SoC-level test
action audio_scenario {
 activity {
 repeat (3) {
 do modem_c::receive;
 do audio_c::play;
 }
 }
}

action mixed_scenario {
 activity {
 parallel {
 do video_scenario;
 do audio_scenario;
 }
 }
 }

Modeling cross-IP flows with PSS activity statements

Randomly
distribute
actions on
available cores

Find legal
configurations,
consistent with
all use cases

Correct by construction:
PSS solvers ensure no over-use of available
resources, insert sync points if/as needed to
achieve a legal scenario

Abstract PSS scenarios
may be specified partially

Behavioral
Activity
Statements

Focus on
certain
memory
areas

Generate complex and valid
cross-IP traffic patterns

87

Value-add
- Construction and analysis of system-level functional coverage metrics

- Portable
- Abstract

- Predictability
- Regression suite optimization, faster coverage closure with gen-time

coverage prediction

Differentiation
- Enabler of innovative verification methodologies and flows

Cost
- Coverage methodology is consistent with PSS scenario modeling and

test generation mindset
- Trainable, deployable

PSS Coverage: Value-add, Differentiation and ROI

Proven Impact and Differentiation
Low Deployment Cost

 = High ROI =

PSS Coverage: Current Capabilities and Applications

 Abstract and high-level, like PSS stimulus itself
- Required for applications in system level, use-case based and software-driven validation

 Portability: critical enabler for applications on fast platforms with low observability
- ATE, Emulation, Silicon Boards, bare metal environments

 Enables tools to predict coverage at generation time [details on slide 11]

- Possible because PSS scenarios are declarative, can be solved upfront
- Highly differentiated in comparison to UVM and other procedurally-driven environments
- Enables flows aimed at generation of exhaustive coverage regression suites

 Easy to define functional coverage spaces over PSS scenario attribute values
- Structurally, same as SV coverage – sets of combinations expressed in terms of cover points, bins and crosses

- Interoperable with eco-system: other coverage engines .e.g Formal, SV and test plan tracking databases
- Low adoption barrier and deployment cost

- Can define coverage goals that span across multiple actions within a scenario
- Enables specification, collection and tracking of system-level behavioral coverage goals [new in PSS 3.0]

88

89

Coverage Maximization and Regression Optimization with PSS coverage

Create Plan

Implement
TB

Generate
tests and
Review

gen-time
coverage

Launch
executions

Debug
failures

Measure
Progress

against the
plan

With PSS coverage
Gen-time coverage can be reviewed for
regression optimization before
simulation starts

Typical SW/HW verification flow
Users can review coverage only
after execution is done

Implications
• Reduced compute

resource requirements
• Less human effort for

coverage review and
test-creation

• Shorter cycles to meet
coverage goals and project
deadlines

DVCON’23 Best Paper Award !

New in PSS 3.0: Behavioral Coverage
 System-Level coverage goal:

- observe overlapping execution of DMA transfer and UART TX operation
- Cross-cover different cores

Prove coverage of key
concurrent behaviors

// Behavioral Coverage Monitor
c: cover {
 activity {
 overlap {
 tx: do uar_c::tx_uart_data;
 dma: do dma_c::chained_xfer;
 }
 }
 covergroup {
 tx_proc: coverpoint tx.core.tag;
 dma_proc: coverpoint xfer.core.tag;
 tpXdp: cross tx_proc, dma_proc;
 } cg;
}

write_data

alloc_first_descr

chained_xfer

chained_xfer

chained_xfer

read_check_data

init_uart

config_uart vip_uart_config

tx_uart_data vip_uart_recieve

rx_uart_data vip_uart_transmit

Memory Allocation Consistency in PSS
action my_op {

rand addr_claim_s<> claim;
constraint claim.size == 20;

}

component pss_top {
action my_op {

rand addr_claim_s<> claim;
constraint claim.size == 20;

}

contiguous_addr_space_c<> mem;

exec init {
addr_region_s<> region1, region2;
region1.size = 50;
mem.add_region(region1);
region2.size = 10;
mem.add_region(region2);

}
}

action test1 {
activity {

repeat (3) {
do my_op;

}
}

}

action test2 {
activity {

parallel {
replicate (3) {

do my_op;
}

}
}

}

OK – allocations can
be recycled across
sequential claims

Allocation error! – cannot
satisfy concurrent claims

my_opmy_op my_op

my_op

my_op

my_op

region1 region2

Memory allocation
management

Methodology: Unify Scenario Space Model Across Environments

// UART TX action
action tx_uart_data: uart_base {
 output uart_tx_stream to_ch ;
 input config_state config_done;
 constraint config_done.done == true;
 lock uart_tx_status_r busy ;
 rand bit[8] data;
 constraint to_ch.data == data;
}

extend action tx_uart_data {
exec body {
 uart_ctrl_ua_tfifo_reg_s tfifo;
 tfifo.data[7:0] = data;
 comp.regs.ua_tfifo.write(tfifo);
 while (comp.regs.ua_csr.read().tempty == 0){
 message(NONE, "Checking Transmit done");
 yield;
 }
 }
}

extend action tx_uart_data {
 exec body C = """
 struct UartConsoleDriver *uart_console =
 &(UartConsole[0]);
 struct UartDriver *uart_driver =
 &(uart_console->driver);
 Uart_WriteTxData(uart_driver, {{data}});

 while (1) {
 if (Uart_TxFifoEmpty(uart_driver))
 break;
 }
 """;
}

PSS is aspect oriented. extend high-level, abstract
representation of behaviors (actions) to provide
different implementations of their exec body
blocks, capturing low-level device programming logic

Write and
read memory-
mapped H/W
registers

Call C S/W
Driver APIs

Reuse abstract PSS
content on
transition from
register to driver-
based testing

Summary: PSS Advantages for SoC Verification Engineers

Leverage tests across
other platforms, avoid
duplication and enable
reuse

Portability of tests across
projects by clean
separation of
configuration data from
behavioral model

Reuse

Improves test generation
throughput.

Exchange test intent
model across multiple
teams

Target multiple cores
and HVL testbenches

Productivity

High-level description of
test intent in a concise
model
Strong semantics to
capture memory,
resource dependencies

Easy to reason,
communicate and
analyze test scenarios

Abstraction

Correct by construction
test scenarios with
concurrency,
synchronization, deep
dependencies, resource
management
Action inference
automates completion of
partially defined
scenarios into legal,
concrete test cases
Abstract debug of
system test failures

Quality

Faster Coverage closure
with upfront coverage
analysis
Efficient regression
planning: Generate and
execute test that
contribute to coverage

Collect and analyze
System-level coverage
from multiple execution
platforms

Months

100%
Coverage

Coverage Closure

Improve and optimize schedule, quality, machine and human resources!!

Post-silicon testing with PSS

Prabhat Gupta

Post-silicon testing goals
Early silicon bring-up

• Screen for defective parts
• Ensure major features and data paths are working

Systematic feature coverage
• Run tests to verify each SoC feature in isolation to build a baseline

Stress testing
• Gradually build-up test complexity from feature coverage to multiple features together
• Create and run tests that mimic real-world scenarios

Production yield optimization
• Select a suite of tests from broad test suite for better yield

All feature enablement with OS and application
• Run real production use cases, measure power and performance

Streamline post-silicon testing with PSS

 Reduced test development cost
- Save time and money by reusing pre-silicon IP/SoC test content
- Empower your team with formal action-based knowledge transfer of test space to enable anyone to create

complex SoC tests

 Feature coverage reports
- Ensure comprehensive testing with PSS coverage features to check coverage of tests before and after run

 Failure debug in simulation or emulation
- Quickly root-cause failure cases for stress test fail or failures in the field with PSS Lego-block based tests
- Connect directly with IP experts using PSS language as a common language for efficient debugging

 Use AI to figure out effective tests for stress testing and yield maximization
- Optimize your testing strategy with actions attributes control knobs that provide better input for AI model

training to choose functional tests

The benefits of PSS stimulus

AI Engine IP – an example use case

 A 2D arrays consisting of multiple AI tiles
- Compute, memory and interface DMA tiles

 Grid of engines and highly configurable network
makes creating post-silicon validation tests very
challenging

Control Processor
Subsystem

AIE array

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Mem Mem Mem Mem

Shim Shim Shim Shim

Early silicon bring-up

 Tests for Power, reset, and clock sequencing
- Quickly create experimental test sequences to screen for

meta-stability and manufacturing issues
- Tested in UVM, ported to processor by PSS tool

 Tests for major datapath and feature coverage
- Run isolated simple tests for datapath and major

features to create a coverage baseline and to screen for
manufacturing issues

 Test coverage report
- Automatic coverage report with PSS coverage feature

Structural DFT tests don’t find all
manufacturing issues

PSS building block approach makes
turnaround fast for experimental

functional tests

Array boot with control processor

setup_tlb

Control Processor
Subsystem

AIE array

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Compute Compute ComputeCompute

Mem Mem Mem Mem

Shim Shim Shim ShimRelease col clamp

col reset deassert

Disable clock gating

Test (Register, DMA, etc)

AI Engine PSS model
// setup address map though TLBs
action setup_tlb { };

// Power up a column
action release_clamp {
 rand int in [0..COLS-1] col;
 rand bool release;
};

// gate, un-gate the column clock
action clock_gate {
 rand int in [0..COLS-1] col;
 rand bool disable_cg;
};

// assert, de-assert the column reset
action reset_col {
 rand int in [0..COLS-1] col;
 rand bool deassert;
};

abstract action boot_base {
 output aie_state aie_state_out;
 constraint aie_state_out.aie_state_obj.boot == true;
};

// Normal boot sequence
action boot_array : boot_base {
 activity {
 do setup_tlb;
 repeat(c: COLS) {
 do reset_col with {col == c; deassert;};
 };
 repeat(c: COLS) {
 do release_clamp with {col == c; release;};
 };
 repeat(c: COLS) {
 do clock_gate with {col == c; disable_cg;};
 };
 };
};

PSS model created by IP team

AI Engine PSS model
// Base action for all building block actions
abstract action aie_base {
 input aie_state aie_state_in;
 constraint aie_state_in.aie_state_obj.boot == true;
};

// A few random register accesses
action register_access : aie_base {
 rand int in [0..NOCS-1] noc;
};

// Program one circuit through the array
action setup_circuit : aie_base {
 output circuit_buf circuit_buf_out;
};

//
action dma : aie_base {
 input circuit_buf circuit_buf_in;
 rand conn_s src;
 rand conn_s dst;
};

// Simplest early bringup test
action bringup_reg_test {
 activity {
 do register_access;
 };
};

// Bringup feature test
action bringup_test_dma_all_cols {
 activity {
 parallel {
 replicate(c: COLS) {

do dma with {
 src.tile.col == c;
 circuit_buf_in.col_circuit == true;
 };
 };
 };
 };
};

PSS model created by IP team

boot_array

bringup_reg_test

boot_array

setup_circtuit

dma dma dma

aie_stateST

circuit_bufBF

aie_state_out

Inferred actions

aie_state_in

circuit_buf_out

circuit_buf_in

circuit_buf_in

circuit_buf_in

aie_state

aie_state_out

aie_state_in

ST

Parallel DMA Register access

Solved bringup tests

Nothing is working in the lab!

 Access to registers inside the
AI Array failing randomly

 Is the boot sequence wrong

 Is there manufacturing fault

 Are we seeing metastability

 Need to create lots of
experimental bootcode and
tests

// Experimental boot sequence

action exp_boot_array : boot_base {
 activity {
 do setup_tlb;
 repeat(c: COLS) {
 do release_clamp with {col == c; release;};
 };
 repeat(c: COLS) {
 do clock_gate with {col == c; disable_cg;};
 };
 repeat(c: COLS) {
 do reset_col with {col == c; deassert;};
 };
 };
};

All building block actions may have complex rules about sequencing that can not be violated. Action
may have random attributes with constraints. A person in lab doesn’t need to be an expert to be able to
create experimental tests. PSS tool can create a test with minimal user input

New experimental tests quickly created in lab

action new_reg_test {
 activity {

do exp_boot_array;
 do bringup_reg_test;
 }
};

action bringup_test_dma_col_0 {
 activity {

do exp_boot_array;
 parallel {
 do dma with {
 src.tile.col == 0;
 circuit_buf_in.col_circuit == true;
 };
 };
 };
};

exp_boot_array

bringup_reg_test

aie_state

aie_state_out

aie_state_in

ST

Contract between IP and IP consumers

 IP public actions should specify most requirements for that action in PSS
- Non-expert users can quicky create new tests
- E.g., DMA action should add a dependency on DMA being powered up and initialized

 IP PSS building blocks are designed by breaking down real world use cases
- Lower barrier to create new tests along with PSS abstraction of behaviors and dependencies
- Consumers use higher abstraction problem domain language with PSS action

 Common flow object types for easy interoperability with other IPs
- A company or industry wide methodology library

Systematic feature coverage, stress testing, yield optimization

 Comprehensive Feature Coverage
- Ensure complete coverage of all datapath and features using PSS building block actions
- Leverage PSS randomization to explore and cover a wide range of operational modes
- Eliminate the need for deep IP expertise for effective coverage

 Robust Stress Testing
- Easily design scenarios that accurately replicate real-world use cases
- Effortlessly create stress scenarios that rigorously exercise all aspects of the IP under test

 Optimizing Manufacturing Yield
- Combine different IP tests with various modes, specifically constrained for the silicon testing environment
- Enhance yield outcomes by leveraging a comprehensive suite of generated tests for experimentation

Conclusion
 Embrace the Future with PSS

- PSS, the state-of-the-art unified pre- and post-silicon testing methodology, leverages randomization and high-level
constructs to revolutionize post-silicon testing

 Streamlined Test Documentation
- Formal test space documentation, coupled with action building blocks, empowers anyone to create tests quickly and

efficiently

 First-Class Automated Coverage Reporting
- With PSS, coverage reporting is elevated to a first-class citizen, ensuring comprehensive and accurate testing results

 Comprehensive Test Suite Generation
- Generate a large suite of tests designed for rigorous stress testing, ensuring the robustness and reliability of your systems

 Simplified Debugging Process
- PSS building blocks streamline the debugging process, making it easier to identify and rectify issues, enhancing overall

efficiency and productivity

Wrapping Up

Tom Fitzpatrick

What’s New in 2.1

 Test Realization
- Memory & Register Enhancements

- Read-modify-write register-access functions to make programming sequences more compact
- Support user modeling of address translation
- Provide gen-time access to resolved allocation addresses
- Support defining a shared storage region with different address-space-specific ‘views’

- Allow concurrent execution to yield execution
- Add support for a comment directive in target-template strings

 Activity Modeling
- Atomic regions that exclude inferred actions
- Labeled anonymous-action traversals
- Enhanced pool-bind directive with support for arrays of components

See last year’s tutorial for more details

What’s New in 2.1
 Core Language

- REMOVED C++
- Floating-point data types
- Base types for enums
- Static functions in components

 I/O and Messaging
- Functions for reading/writing files
- Functions for formatting strings, displaying messages, reporting errors

 Randomization
- Procedural randomization in exec blocks and functions
- Randomization of list elements
- Weighted random-distribution directive

What’s Coming in 3.0

 Given a stream of action executions, find out whether a
given temporal scenario (query) occurs in this stream

 The cover statement specifies the interesting scenario

 A monitor encapsulates behaviors to be covered
- A monitor may be implicit (in a cover statement) or explicit

 The answer is yes or no
- Yes, if the top-level monitor has at least one match,
- No, otherwise

© 2023 Accellera Systems
Initiative, Inc.

idle
write

read
send

write
wait

read
read

WR: cover { do write; do read }

Introducing Scenario-Level Behavioral Coverage

PSS 3.0 Public Review
Coming Soon!

PSS + UVM provides the required abstraction

 More time spent thinking about scenarios

 Less time spent on implementation

 Flows as executable documentation

 PSS can be added into UVM environment
to act as test content generator capability

IP / Sub-System RTLIP / Sub-System RTLIP / Sub-System RTL

UVM Environment
Interface VIPsInterface VIPs Interface VIPsInterface VIPs

Tool specific realization

PSS Model
SD Read Display

Photo P

Camera
Photo P

SD Write

Whiteboard

PSS Enables True Block-to-SoC Reuse
 Easily capture IP-specific

knowledge
- Abstract model independent

of target language/platform
- Define rules for reuse

 Compose complex
scenarios
- PSS models are hierarchical
- Infer actions based on rules

 Model gets implemented
on your target platform(s)
- Correct-by-construction
- Model defines memory/register

rules and behaviors

Thank You!
Adnan Hamid – Breker

Tom Fitzpatrick – Siemens EDA

Matthew Ballance - AMD

Prabhat Gupta - AMD

Tom Fitzpatrick – Siemens EDA

Sergey Khaikin - Cadence

QUESTIONS

	Portable Stimulus Tutorial
	Agenda
	PSS Motivation�Why should UVM Engineers care about PSS�
	What does the data tell us ?
	UVM Engineers hold critical corporate knowledge
	UVM is the standard testbench methodology
	UVM does not help with creating test content
	Difficult to randomize scenarios
	UVM - Limited support for concurrency, resource and memory management
	PSS - support for concurrency, resource and memory management
	Limited ability to combine scenarios in UVM
	HW/SW Interface of a Typical SoC
	Very complex UVM TB Architectures
	PSS + UVM provides the required abstraction
	What benefits do UVM engineers report?
	UVM sub-system: Easy Port to Full SoC
	Seamless reuse across sim/emu/post-si
	What benefits do integration teams report ?
	What is PSS?
	Methodology Shifts Require New Thinking
	PSS is Declarative
	What is a Portable Stimulus Model?
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	Concise Language to Specify Verification Intent
	The Rubber Meets the Road
	Exec Blocks Define the Target Implementation
	Exec Blocks Define the Target Implementation
	Exec Blocks Define the Target Implementation
	PSS Generalized Tool Flow
	Generated Code Assembled According to Activity Schedule
	Slide Number 41
	Developing Reusable Test Content at Block Level
	PSS Test Content at Block-IP level
	PSS Modeling and Realization
	Simplifying Register Programming with a RAL
	PSS RAL Overview
	Defining PSS Register Layout
	Reading/Writing Registers with the PSS RAL
	How is a PSS RAL Created?
	Modeling: IP Behavior - Initialization
	Test Realization: UART Register Definitiion
	Test Realization: Programming Sequence
	Modeling: Specialized Initialization Actions
	Modeling: Requiring Initialization
	Methodology: Factoring Out Commonalities
	Placing Requirements on Initialization Mode
	Initialization Coverage - UART
	DMA Behavior – Single DMA Transfer
	PSS Action Outline
	Modeling: Claiming Memory
	Test Realization – DMA Single Transfer
	Modeling: Encapsulating Complex Behaviors
	Modeling: Encapsulating Complex Behaviors
	Modeling: Building a Descriptor Chain
	Modeling: DMA ‘chain’ buffer
	Modeling: Add-Descriptor Action
	Test Realization: Descriptor Packed Struct
	Test Realization: Populating Descriptor Chain Link
	Test Realization: Running Chained Transfer
	Modeling: Encapsulating Transfer-Chain Building
	Modeling Wrap-up: IP-centric PSS Component
	PSS Environment Integration
	Connecting PSS to a SystemVerilog Testbench
	PSS at IP-Block Level: Summary
	Sub-system and SoC–level testing with PSS
	PSS Beyond Block IP: History and Future
	PSS for SoC / Sub-system: Goals and Requirements
	Test Content for SoC / Sub-system: Challenges
	Assembling PSS View of a Modern SoC Design:�From Vision to Deployable Methodology and Production Use
	Slide Number 80
	Modeling cross-IP flows at SoC Level�
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Assembling PSS View of SoC Design -�The Full Picture
	Modeling cross-IP flows with PSS activity statements�
	Slide Number 87
	PSS Coverage: Current Capabilities and Applications
	Slide Number 89
	New in PSS 3.0: Behavioral Coverage
	Memory Allocation Consistency in PSS
	Methodology: Unify Scenario Space Model Across Environments�
	Slide Number 93
	Post-silicon testing with PSS
	Post-silicon testing goals
	Streamline post-silicon testing with PSS
	AI Engine IP – an example use case
	Early silicon bring-up
	Array boot with control processor
	AI Engine PSS model
	AI Engine PSS model
	Solved bringup tests
	Nothing is working in the lab!
	New experimental tests quickly created in lab
	Contract between IP and IP consumers
	Systematic feature coverage, stress testing, yield optimization
	Conclusion
	Wrapping Up
	What’s New in 2.1
	What’s New in 2.1
	What’s Coming in 3.0
	PSS + UVM provides the required abstraction
	PSS Enables True Block-to-SoC Reuse
	Thank You!
	Questions

