
Planning for RISC-V Success
Verification Planning and Functional Coverage

Duncan Graham, Aimee Sutton, Simon Davidmann, Imperas Software

Pascal Gouedo, Xavier Aubert, Yoann Pruvost, Dolphin Design

CV32E40Pv2: Industry + Open-Source
collaboration
• CV32E40P:

• 32-bit in-order RISC-V core maintained by OpenHW Group

• originated as RI5CY (ETH Zurich)

• Reached verification closure (TRL-5) in 2020

• PULP instructions were removed in the first version

• CV32E40Pv2:
• Dolphin Design joins OpenHW Group to continue development

• PULP instructions are included in v2

• Imperas provides verification IP and functional coverage to achieve TRL-5

CV32E40P V2 Verification Challenges

• 300 New instructions (PULP) to be verified

• 120 existing instructions from V1 must be re-verified

• Dual approach to verification: formal and functional simulation

• Formal: architectural compliance

• Functional: complex features, e.g. hardware loops, interrupts, debug
mode

Verification Planning

• For a RISC-V processor, a major source of test stimulus is the program
running on the core
• An infinite amount of stimulus is possible

• Verification plan is required to capture goals and determine when
testing is complete
• Functional coverage is a key metric to measuring those goals

• Verification plan completion is required to achieve TRL-5

• CV32E40P v2 verification plan:
• https://github.com/openhwgroup/core-v-verif/tree/cv32e40p/dev/cv32e40p/docs/VerifPlans

https://github.com/openhwgroup/core-v-verif/tree/cv32e40p/dev/cv32e40p/docs/VerifPlans

Simulation Verification Environment

• CV32E40P v1 testbench replaced by a new
one using ImperasDV

• Same program is run on both RTL and
processor reference model

• Internal state of RTL and async events sent
to ImperasDV using RVVI-TRACE

• Internal state of RTL and ref continuously
compared as each instruction retires

• ImperasDV flags mismatches immediately

Simulation Verification Environment (2)

• Functional coverage model (riscvISACOV)
provided by ImperasDV

• Coverage is sampled using RVVI-TRACE
data from RTL

• Coverage model designed to be extensible
by the user

Functional coverage challenges

• CV32E40P v2 implements I, M, (F or Zfinx), C extensions
• total 120 instructions

• Each instruction requires 10-30 lines of SystemVerilog code to define
coverage model
• that’s 3600 lines of code

• tedious and error-prone to create by hand

• 300 PULP instructions would require additional ~9000 lines of code
• automation is required

riscvISACOV
SystemVerilog functional coverage

• A machine-readable version of the RISC-V ISA
is used to auto generate reusable covergroups
and coverpoints

• Coverage defined by the RISC-V specification, not
design specific

• Provides coverage of instructions, their
operands and values, illegal instructions, data
hazards

• Generated coverage is modular: include only
the extensions which are implemented

• A similar paradigm was used to generate
coverage for the PULP instructions

RISC-V ISA
specification

SystemVerilog functional coverage code

RV32I
RV32E

RV32M
RV32C

RV32F

RV64I
RV64E

RV64M
RV32C

RV64F

SystemVerilog coverage
code generator

riscvISACOV
functional
coverage

Example: Hardware Loops
• Hardware loops make executing a piece of code

multiple times possible without the overhead of
branches penalty or updating a counter.

• Hardware loops involve zero stall cycles for
jumping to the first instruction of a loop.

• A hardware loop is defined by

• its start address (pointing to the first instruction in the
loop)

• its end address (pointing to the instruction just after
the last one executed by the loop)

• a counter that is decremented every time the last
instruction of the loop body is executed.

programs/custom/pulp_hardware_loop/pulp_hardware_loop.S

#test1 hardware loops programmed using
immediates starti, endi and counti instructions
test1:

li x17, 0
li x18, 0
.balign 4
cv.counti 1, 10
cv.endi 1, endO_1
cv.starti 1, startO_1
cv.endi 0, endZ_1
cv.starti 0, startZ_1
cv.counti 0, 10

startO_1:
startZ_1:

addi x17, x17, 1
addi x17, x17, 1
addi x17, x17, 1

endZ_1:
cv.counti 0, 10
addi x18, x18, 2

endO_1:

Hardware Loop Instructions

• Eight different instructions can be used in hardware loops

• CV.START instruction is used to set the start address of the loop relative to the
current value of the program counter (PC)
• Uses a register to hold the offset from the current PC value

• This is used to load the loop start address register

Requirement Location Feature Sub Feature Feature Description Verification Goal Pass/Fail

Criteria

Test Type Coverage Method

Register operands

All possible rs1 registers are used.

Check

against RM

Constrained-

Random

Functional

Coverage

coverage:

All bits of rs1 are toggled

Check

against RM

Constrained-

Random

Functional

Coverage

CV32E40P User Manual -

Chapter 18.3

CV.START cv.start L, rs1

lpstart[L] = PC + rs1

Loads the lpstart[L] CSR register with

current PC value plus an unsigned

integer

Hardware Loops

Instructions

riscvISACOV and Hardware Loops

• riscvISACOV includes documentation / verification plan information

• csv and markdown formats for easy inclusion in verification plans
Extension Subset Instruction Description Covergroup Coverpoint Coverpoint Description Coverage Level

XPULPV2 RVXPULPV2 cv.start cv_start_cg

cp_asm_count Number of times instruction is executed Compliance Basic

cp_L HW Loop L Compliance Basic

cp_rs1 RS1 (GPR) register assignment Compliance Basic

cp_rs1_sign RS1 (GPR) sign of value Compliance Basic

cp_rs1_toggle RS1 Toggle bits Compliance Extended

cp_rs1_maxvals RS1 Max values Compliance Extended

Note: more coverpoints than specified in the CV32e40P v2 verification plan!

Coverage Levels

• Enables the user to select a level of coverage depending on maturity
of design

• Design is immature and undergoing frequent change:
• compliance basic can provide insight into effectiveness of test stimulus

• Design is stable
• compliance extended provides goals for verification closure

CV32E40P PULP directed test with coverage

Summary and conclusion

• CV32E40P v2 faced several design verification challenges
• 300 new PULP instructions

• re-verification of v1 core

• limited tool and human resources

• Success is achieved using
• verification planning

• RISC-V processor verification IP

• Machine-generated functional coverage

Questions

• Thank you

• Duncan Graham (graham@imperas.com)

	Slide 1: Planning for RISC-V Success Verification Planning and Functional Coverage
	Slide 2: CV32E40Pv2: Industry + Open-Source collaboration
	Slide 3: CV32E40P V2 Verification Challenges
	Slide 4: Verification Planning
	Slide 5: Simulation Verification Environment
	Slide 6: Simulation Verification Environment (2)
	Slide 7: Functional coverage challenges
	Slide 8: riscvISACOV SystemVerilog functional coverage
	Slide 9: Example: Hardware Loops
	Slide 10: Hardware Loop Instructions
	Slide 11: riscvISACOV and Hardware Loops
	Slide 12: Coverage Levels
	Slide 13: CV32E40P PULP directed test with coverage
	Slide 14: Summary and conclusion
	Slide 15: Questions
	Slide 16

