
Performance modeling and timing 
verification for DRAM memory subsystems

Thomas Schuster, Peter Prüller, Christian Sauer

© Accellera Systems Initiative 1



Motivation

• DRAM is part of almost every SoC package

• Shared amongst multiple processing elements 
through complex interconnect

• Very often performance bottleneck

• Need exploration at System Level using fast simulation models
to ensure latency and throughput requirements can be met

• Need appropriate Simulation IP / especially flexible reconfigurable 
DRAM controller TLM

© Accellera Systems Initiative 2



• Performance modeling approach

– DRAM memory subsystem

– TLM interfaces

– Dataflow modeling

• Verification setups / simulation results

– Simulation accuracy RTL vs. TLM

– Latency analysis

– Data path and fifo monitoring

3

Outline



DDR CONTROLLER PERFORMANCE MODELING

© Accellera Systems Initiative 4



Modeling goals
DRAM memory subsystem

© Accellera Systems Initiative 5

DDR Controller
DDR

PHY
DRAM

DFI

HOST IF / AXI

DDR

• Measurement of throughput and latency at the host interface in steady-state 

with max error ~15%

• Indicators for performance bottlenecks

• Significant speedup over RTL simulation

• Configurability / Reuse for different system configurations, memory types, etc.

Initiators
+

NoC

Exploration focus



Modeling approach
Abstract PHY and memory

© Accellera Systems Initiative 6

DDR Controller

+ PHY Delay

Untimed

Simulation

Memory

NoC 
+ 

Initiators

AXI

• PHY Delays can be added by the controller model 

-> PHY model not needed in steady state

• DDR Controller is aware of DRAM type and layout 

-> data can be held in untimed simulation memory

CTRL

Exploration focus

Abstracted I/O interface



Modeling approach
Interfaces as TLM2.0 sockets / CCI configuration

© Accellera Systems Initiative 7

DDR Controller

+ PHY Delay

Untimed

Simulation

Memory

NoC 
+ 

Initiators

AXI

Loosely-timed 

memory interface

Loosely-timed register interfaceApproximately-timed (non-blocking)

data bus interfaces

CTRL

• Ignorable payload extensions for side-band signals, e.g. Quality of Service

• TLM standard protocol + allowing reads and writes to be accepted in parallel (AXI)

CCI 



Modeling approach
Behaviour as SystemC dataflow

© Accellera Systems Initiative 8

Library of essential components for modeling the controller:

1. Token

• Basic dataflow objects / ddr command

• Contains reference to TLM2 generic payload

2. Push/pull ports

• Interfaces to dataflow components

• Pushing tokens downstream: out_push, in_push

• Pull upstream tokens: in_pull, out_pull

3. Queues

4. Mux / Demux

5. Threads

• Inserting or removing tokens to queues at a rate or on a trigger

queue

push_out push_in

token

Thread

pull_out pull_in

token

Push Chain

Pull Chain

push/pull demux

push/pull mux

(scheduler)

Simplifies reuse and maintainance of models !



Dataflow library
Example multi-port arbiter / BW-aware priority round-robin

© Accellera Systems Initiative 9

Prio 0 Queue

Prio 1 Queue

Prio 0 Queue

Prio 1 Queue

out_pull 

in_pull 

BDW
Mon

Thread
rated 

unqueue

out_push 

in_push 

To

Core

Tokens are pulled through arbitration by single unqueue thread!

push chain pull chain

Port 0
Thread

Port 1
Thread

round robins

priority



10

DDR Controller dataflow model
Build on dataflow library

tlm_utils::simple_initiator_socket<32>*
sc_vector<tlm_utils::simple_target_socket<32> * >

tlm_utils::simple_target_socket<32> sc_in<bool>

sc_out<bool>

class ddr

cmdfifo0

port_arbiter

prio_sched

bw mon SC_THREAD

port_pull

cmd 

split

ddr_cq

c
o
m

m
a
n
d
 

q
u
e
u
e

s
m

a
rt

In
s
e
rt

exec

strat

SC_THREAD

cq_pull
auto-refresh

ddr_mem delay

(CASLAT, 

WRLAT)

*

m
e
m

_
in

_
p
[0

-2
]

re
g
_
in

_
p

class lpddr4_base_module

slave_port lpddr4_regs

DDR_CTL_0

...

DDR_CTL_523
r/

w

class lpddr4 : public ddr, public lpddr4_base_module

read/write bit-field callbacks

start, row_diff, col_diff, ...

ctrl_state
RESET / STOPPED / RUNNINGre

s
e
t_

p

m
e
m

_
o
u
t_

p
ir
q
_
p

reset_registers

start, oor, multi-oor

age-commands

ddr_mem_timers
try_prep(cmd)

can_run(cmd)

do_run(cmd)

check

update

mem_out

trigger response

blocking access to connected functional memory

tlm::tlm_analysis_port<>

a
n
a
ly

s
is

_
p

core

rdfifo [0 -2]

core 

wmatrix

Backdoor interface

public:

load_regconfig(const char * name);

start_ctrl(int32_t row_diff=-1, int32_t 

col_diff=-1);

busport info

analysis data

busport0

port

rdfif

oport

wdfif

o

busport0

port

rdfif

oport

wdfif

oport

wdfifo

busport0

busport1

busport2

Streaming width of data sockets does not reflect RTL configuration (128bit/64bit/64bit). Set to 32bit for all interfaces on customer request. 

in-port

arbiter

Dataflow:

• Bus transactions translated

in one or multiple data flow tokens

• Tokens propagate through system

based on backpressure from

fifos, queues and memory timers

• Very few threads required
(can be stopped if no data or 

no space)



TIMING VERIFICIATION

© Accellera Systems Initiative 11



12

Timing verification setup
TLM/RTL co-simulation with commercial verification IP

SystemC TB

TLM/SC CTRL

LPDDR4 DUT
SystemC 

(simple_memory)

TLM2 gp (AXI)

gp

p
a
rs

e
g
e
n

TLM bus master

(master_port_at)

RTL CTRL

Reference

+ SimPHY

LPDDR4

mem model

AXI

VIP

test reports 

(RTL/SC)

Stimulus 

(CSV)

AXI

VIP

AXI

VIP

AHB

VIP

*

*

T
L

M
2

g
p
 (

A
H

B
)

TLM-2-RTL

transactors

m
e
m

_
o
u
t_

p
[0

..
2
]

re
g
_
o
u
t_

p

reg_in_p

mem_in_p[0..2]

SW config

(regconfig)

HW config

(clocks, fifo 

sizes, ..)

• Common test bench (SystemC) for TLM and RTL designs

• TLM/RTL co-simulation AMBA VIP



13

Simulation results
Throughput TLM vs. RTL in %

te
s
t 
p

a
tt
e

rn

design configurations

Goal: TLM should always predict pessimistically (0 – 15% slower than RTL) 

SystemC 0-15% slower 

than RTL (target range)

SystemC 0-15% faster 

than RTL (needs fixing)

Error > 15%

(needs fixing)



14

Simulation results
Latency over time

L
a

te
n

c
y
 i
n
 A

X
I 

c
lo

c
k
s

Simulation time ps

Example: Random r/w traffic on three ports

• Latency of reads and writes from 

different ports

• Low latency @ simulation begin

• High latency after queue has filled up
(random traffic with low locality causes

many bank activations)

• Auto-refreshes temporary stop execution
(latency peaks)

auto-refresh



15

Simulation results
Controller command queue

Observations:

• Command queue quickly 

fills up and remains full 

• Back-pressure from core 

command queue)fi
ll 

le
v
e

l

auto-refresh

Simulation time ps



16

Simulation results
Write data path fifos

Observation:

• Core write data fifo is

to small (only 8 entries)

• Execution of writes

slowed down / 

stalls back into 

bus port 

fi
ll 

le
v
e

ls

Simulation time ps



17

Simulation results
Write response fifos

fi
ll 

le
v
e

ls

Simulation time ps

Observation:

• No stalls on write

response channel

• Number of writes to

be accepted at a time

(outstanding write 

responses) limited by

capacity of write data

fifos (previous slid)



18

Simulation results
Read data path fifos

fi
ll 

le
v
e

ls

Simulation time ps

Observation:

• Very view stalls on

read data path

• Fifo size appears

sufficient 

(for given traffic)



• Performance exploration of SoC can be leverages using an 
Approximately-timed DDR CTRL TLM

• Early understanding of performance bottle-necks 
leads to better quality of results

• Accuracy goals throughput / latency within reach

19

Conclusion



Thanks ! 

Questions ?

© Accellera Systems Initiative 20


