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AMS Verification: 
Requires extensive simulation 
due to process, voltage, and 
temperature (PVT) variations. 
Alternately, there is a substantial 
increase in number of process 
parameters – growth of ~20% 
every 4 to 5 yrs[1].

Need: 
Accurate, efficient propagation 
of circuit-level PVT variations in 
system analysis.

[1] X. Li, J. Le, and L. T. Pileggi, “Statistical performance modeling and optimization,” Foundations and  trends in Electronic Design 
Automation, vol. 1, no. 4, pp. 331–480, 2006, ISSN: 1551-3939, 1551-3947. DOI: 10.1561/1000000008. 1

Variations not 
considered due 
to circuit size & 
lack of statistical 
information
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State-of-the-Art

Polynomial-based approaches

Learning-based approaches

Linear model-based approaches

• Response Surface Modeling (RSM) - Felt et al.[2],         
Filiol et al.[3]

• Random Polynomials - Lange et al.[4]
• Universal Kriging - Okobiah et al.[5]

+ High model accuracy using quadratic models
+ Parameter correlations using matrix(𝑁 × 𝑁)
- Model complexity ~𝑂(𝑁ଶ)

• Correlated Bayesian Model Fusion (BMF) using Bayesian 
inference - Gao et al.[6], Alawieh et al.[7]

• Particle Swarm Optimization (PSO) - Garitselov et al.[8]
- Increased fitting complexity and training cost
- No capture of parameter correlations

• Quasi-Sensitivity Analysis - Kuo et al.[9]
• Affine Kernel Approach - Zivkovic et al.[10]

+ Accuracy comparable to RSM with reduced 
computational costs
+ Correlation preserved by models; No need for 
correlation matrix

Our behavioral models are constructed using Affine 
Kernel approach.

#N: Number of PVT parameters/ Number of random variables

Statistical behavioral modeling considering PVT variations:
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Variation-Aware Behavioral Models
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Hierarchical Approach
1. Statistical Performance Models(SPM)
Model circuit performances as a 
function of PVT variations

2. Variation-Aware Behavioral Models
(VABM)

Combine functional behavioral models 
with SPMs
Account inter-block parameter 
correlations

Inter-block correlations
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FUNCTIONAL BEHAVIORAL MODEL

 Behavior defined as a function:

 Parameters (Y) <=> key performance 
metrics of the modelled circuit block 

𝑓௕௘௛: 𝐼𝑛𝑝𝑢𝑡𝑠 → 𝑂𝑢𝑡𝑝𝑢𝑡𝑠

𝑖ଵ

𝑖௜

𝑜

𝑌

𝑓௕௘௛(𝑌, 𝐼)
.
.
.
.

(STATISTICAL) PERFORMANCE MODEL
 Model performance metrics as functions 

of P,V,T variations  

                         𝑦௝ ~ 𝑓 𝑃, 𝑉, 𝑇 ,           𝑦௝ ∈ 𝑌

𝑦௝~ 𝑦௡௢௠ +  ෍ 𝛿௞𝑠௞

௡

௞ୀଵ

𝑦௡௢௠ − 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 y୨

𝛿௞  − 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑘௧௛ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
𝑠௞  − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

 Model generated from statistical 

simulation data

VARIATION-AWARE BEHAVIORAL MODEL
 Parameters sampled based on distributions 

estimated by the model

Variation-Aware 
Behavioral Model (VABM)
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Functional behavioral 
model

𝑓௕௘௛(𝑌, 𝐼)𝐼

SystemC-AMS[11]

o

VABM Construction

Hierarchical Framework: Bringing characterization 
data to behavioral block-level models

Circuit of a block

Characterization 

Statistical 
Simulation

Statistical Performance 
Model (SPM) Generation

𝑦௜~ 𝑓 𝑃, 𝑉, 𝑇
𝑦௜  ∈ 𝑌

.py script

Parameterizer

SPM Results 
Read

Generate 
performance’ 

samples based on 
distribution of 

P,V,T parameter’ 

Global P,V,T set 
-> Apply local & 

global 
parameter 

samples

9
[11] “IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Extensions Language Reference Manual,” Jan. 2016, doi: 
https://doi.org/10.1109/ieeestd.2016.7448795.

#metadata
#Perfs:Perf1,Perf2
#Sensitivities: 
‘Vdd’,’Mos3’,’T’...
#Dist: 
{[‘Vdd’:’gauss’],[’Mos3’:’
gauss’],[’T’:’unif’]}

SPM Results

Y={Perf1,Perf2}
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Evaluation
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Phase-Locked Loop
CP Output 

𝐼௖௣

LPF Output 
𝑉௖௧௥௟

System Performance: 
PLL Locktime [μs]

Phase 
Detector

Charge 
Pump
VABM

Frequency 
Divider

VCO
Loop Filter 
(order 2)

VABM

up

dn

𝐼௖௣ 𝑉௖௧௥௟
𝑓௥௘௙

𝑓௢௨௧

𝑓ௗ௜௩

Discrete Event (DE) Timed Data Flow (TDF)

Performs = 
{𝐼௨௣, 𝐼ௗ௡}

Performs = 
{Gain, Poles, 

Zeros}

Fig: SystemC AMS model of a phase-locked loop[12]

No. of PVT 
parameters

Block Performance 
Metrics

35𝐼௨௣, 𝐼ௗ௡

53𝐺𝑎𝑖𝑛, 𝑃𝑜𝑙𝑒𝑠, 𝑍𝑒𝑟𝑜𝑠

23Shared variations 
CP and LPF

10[12] A. Dias, “Phase Locked Loop Simulator in SystemC-AMS,” Américo Dias, Mar. 02, 2018. https://americo.dias.pt/docs/technical/pll/ 

VABMs act as plug & play 
models in hierarchical analysis. 

VABMs takes care for inter-
block correlations.



Model Accuracy: VABM vs Circuit Monte Carlo

Fig: Example Charge Pump

[13] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions on Information Theory, vol. 37, no. 1, pp. 145–
151, 1991. DOI: 10.1109/18.61115 

Feature

2000Monte Carlo Runs

Jenson Shannon 
Divergence (JSD)[13]

Probability 
Distribution Function 
(PDF) Comparison

Mean(μ), 
Standard Deviation(σ), 
Skewness(γ), 
Kurtosis(𝛽ଶ)

Statistical Measures

±3σTarget Sigma
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System Analysis
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PLL System Performance 
using VABMs
• Performance metric: Lock time of PLL

• PDFs also highlight cases where PLL 
fails to lock (at 0 seconds)

• #Monte Carlo runs: 2000

Example: PLL output frequency for 10 Monte Carlo runs
Model simulated for 200 [μs], Sampling rate 100 [ps]

ValueSimulation Metrics

0.76 [s]Single run time

~ 0.03 [s]Simulation overhead 
incl. Parameterizer 

2000×0.76[s]
~ 25 minsTotal wall clock time
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System Analysis: PLL
• Charge Pump Variation – PLL 

locally sensitive to CP

• Loop Filter Variation – Poor 
damping introduces harmonics in 
locking behaviour

• CP + LPF Combined Variation
o Capture effect of inter-block 

correlations on PLL 
o Charge pump removes meta-

stability

Fig: Charge pump variation effect Fig: Loop filter variation effect

Fig: CP + LPF variation effect
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Comparison with other scenarios
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Gaussian Model
What if P,V,T variations and dependencies are not considered in system level?
Solution -> All block performance metrics are independent random variables. 

Scenario 1: 
Gaussian model – Assume block performance metrics follow a normal distribution. 

Fig: Probability distribution functions(PDFs) of charge pump currents – Gaussian model vs Circuit simulation
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Gaussian Model: Limitations

Limitations:
 Assumes symmetric distribution 
 No information on PVT data & inter-block correlations
 Estimated ±3σ ranges are narrow, potentially overlooking 

outlier behavior
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FMKL Generalized Lambda Distribution 
(FMKL GLD) model
Scenario 2: FMKL Model: Freimer, Mudholkar, Kollia, and Liontas [14]
• Circuit performance distributions modeled using FMKL GLD.
• Quantile function defined by inverse cumulative distribution [14,15]

[14] A. Lange, I. Harasymiv, O. Eisenberger, F. Roger, J. Haase, and R. Minixhofer, “Towards probabilistic analog behavioral 
modeling,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal: IEEE, May 2015, pp. 2728–2731, 
ISBN: 978-1-4799-8391-9. DOI: 10 . 1109 /ISCAS.2015.7169250.

[15] Z. A. Karian and E. J. Dudewicz, “Fitting the generalized lambda distribution to data: A method based on percentiles,” 
Communications in Statistics - Simulation and Computation, vol. 28, no. 3, pp. 793–819, 1999. DOI: 10 . 1080 
/03610919908813579. eprint: https : / / doi . org / 10 . 1080 /03610919908813579.

𝐹ିଵ 𝑢 =  𝜆ଵ +

𝑢ఒయ − 1
𝜆ଷ

−
(1 − 𝑢)ఒర − 1

𝜆ସ

𝜆ଶ

where 0 < 𝑢 < 1

Parameters:
𝜆ଵ  − 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛
𝜆ଶ  − 𝑠𝑐𝑎𝑙𝑒 
𝜆ଷ, 𝜆ସ − 𝑠ℎ𝑎𝑝𝑒 
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FMKL GLD Model: Limitations
Limitations:

 No information on PVT data & 
inter-block correlations

 Limited support for 0 ≤ 𝜆ଷ, 
𝜆ସ[16]

 No closed-form for PDF; values 
derived from the quantile 
function

[16] Y. Chalabi, D. J. Scott, and D. Wuertz, “Flexible distribution modeling with the 
generalized lambda distribution,” 2012.

Fig: FMKL GLD Support Region [16]
𝜆ଷ

Lower 
infinite 
support

Infinite 
support

Finite 
support

Upper 
infinite 
support

𝜆ସ

0

0
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Effect of inter-block 
correlation
 Lower variances in PLL spread for FMKL GLD and 

Gaussian model.

 VABM spread similar to Gaussian model but also 
accounts effect of inter-block correlations.

Fig: Comparison of system performance metrics using all approaches
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Summary
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Summary
 A scalable hierarchical methodology for propagating process variations 

to system-level simulations using VABMs

 Effectively account for inter-block parameter correlations

 Effectively capture circuit behavior while aligning boundaries of the 
distribution

 Accelerate simulation speedup with minimal computational overhead
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Outlook
 System analysis using improved SPM (employing piecewise linear models) over 

linear affine kernel.

 Explore significance of number of P,V,T parameters on system performance.

 Evaluate system performance using hierarchical regression analysis.

 Explore advanced statistical sampling techniques to observe tail behavior.
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Thank you!
Questions?

neha.chavan, jan.rodel, carna.zivkovic @nxp.com, 
cgrimm@rptu.de
NXP Semiconductors GmbH, Beiersdorfstraße 12, 22529 Hamburg
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Proposed VABM
• Our proposed VABMs are 

defined based on the 
concept of parameter 
adaptive models[2]. 

• The functional process 
(𝑓௕௘௛) represents 
functional behavior 

• (Y) enables functional 
adaptivity using Affine 
kernel[3]

𝑖ଵ

𝑖௜

𝑜

𝑌

𝑓௕௘௛(𝑌, 𝐼)

.

.

.

.

𝒇𝒃𝒆𝒉: 𝑰 × 𝒀 → 𝑶

𝑌 = 𝑦௝ 𝑦௝ ∈ ℝ, 1 ≤ 𝑗 ≤ 𝑚 ; 𝑚 𝑎𝑟𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑚𝑒𝑡𝑟𝑖𝑐𝑠

𝐼 = 𝑖ଵ, 𝑖ଶ, … 𝑖௜ ; 𝐼 𝑖𝑠 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

𝑜 ∈ 𝑂, 𝑤ℎ𝑒𝑟𝑒 𝑂 𝑖𝑠 𝑎 𝑠𝑒𝑡 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙𝑠

𝒘𝒉𝒆𝒓𝒆

[2] I. Sander and A. Jantsch, “Modelling adaptive systems in ForSyDe,” Electronic Notes in Theoretical Computer Science, Proceedings of the First Workshop on Verification of Adaptive Systems 
(VerAS 2007), vol. 200, no. 2, pp. 39–54, Feb. 29, 2008, ISSN: 1571-0661. DOI: 10.1016/j.entcs.2008.02.011
[3] C. Zivkovic, J. Roedel, N. Chavan, F. Rethmeier, and C. Grimm, “Variation-aware performance verification of analog mixed-signal systems,” in DVCon Europe 2023; Design and Verification 
Conference and Exhibition Europe, Nov. 2023, pp. 7–13.



1. Read statistical 
performance model 
results onto performance 
objects

2. Inject all parameters in a 
global PVT set – ensures 
consistency of sampled 
value for all VABMs

3. Apply local sensitivity and 
calculate performance 
values

4. Feed the calculated 
performance to functional 
behavioral blocks

Hierarchical Framework



Data Format (.par)

Metadata

Performance 
data

Parameters 
data



Results – Charge Pump and Loop Filter VABM



Benchmarks - Response Surface Modeling vs Quasi Sensitivity Analysis

C.-C. Kuo, M.-J. Lee, C.-N. Liu, and C.-J. Huang, “Fast Statistical Analysis of Process Variation Effects Using Accurate PLL Behavioral Models,” 
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 6, pp. 1160–1172, Jun. 2009, doi: 10.1109/TCSI.2008.2008502.



• Correlated Bayesian Model Fusion (C-BMF) – Case study Operational Amplifier

• Particle Swarm Optimisation (PSO) – Case study PLL

Benchmarks - Learning-based approaches

35Number of PVT parameters

200 Monte Carlo SamplesTraining cost

1000 runs over 5 daysCircuit Monte Carlo

1184 P + 36 VTNumber of PVT parameters

540 samples Training cost

1.05 HoursSimulation cost

20 MinsFitting cost

[1] Z. Gao, F. Wang, J. Tao, Y. Su, X. Zeng, and X. Li, “Correlated bayesian model fusion: Efficient high-dimensional performance 
modeling of analog/RF integrated circuits over multiple corners,” IEEE Transactions on Computer-Aided Design of Integrated Circuits 
and Systems, vol. 42, no. 2, pp. 360–370, Feb. 2023, ISSN: 1937-4151. DOI: 10 . 1109/TCAD.2022.3174170.

[2] O. Garitselov, S. P. Mohanty, E. Kougianos, and G. Zheng, “Particle swarm optimization over non-polynomial metamodels for fast 
process variation resilient design of nano-cmos PLL,” in Great Lakes Symposium on VLSI, Salt Lake City, UT, USA, ACM, 2012, pp. 255–
258. DOI: 10.1145/2206781.2206843



JSD 0,1 , for log base = 2

KL is the Kullback-Leibler divergence or 
‘relative entropy’

KL(P || Q) = ∑ P(i)୧ ∗ 𝑙𝑜𝑔ଶ
୔ ୧

୕ ୧

KL(P || Q) = 0 (P identical to Q)
KL(P || Q) ≠ KL(Q || P)

JS divergence between two PDFs P 
and Q

JSD(P| Q =
1

2
KL P || M +

1

2
KL(Q || M)

M = (P+Q) / 2

Jensen-Shannon Divergence (JSD)



Consider probability distribution functions(PDFs) of P and Q, where

𝑃(𝑋 = 𝑥) =
𝑃 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑎𝑛𝑐𝑒𝑠 𝑜𝑓 𝑥

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
P = [1,0,0]
Q = [0,0,1]

then 𝑀 =
ଵ

ଶ
𝑃 + 𝑄 =

ଵ

ଶ
1, 0, 0 + 0, 0, 1 = 0.5, 0, 0.5

1

2
KL(𝑃| 𝑀 =

1

2
1 log

1

0.5
+ 0 log

0

0
+ 0 log

0

0.5
=

1

2
logଶ 2

1

2
KL(𝑄| 𝑀 = 0 + 0 +

1

2
1 log

1

0.5
=

1

2
logଶ 2

𝐽𝑆𝐷(𝑃| 𝑄 =
ଵ

ଶ
KL(𝑃| 𝑀 +

ଵ

ଶ
KL(𝑄| 𝑀 = 1

Jensen-Shannon Divergence
Example: For disjoint distribution



PVT Variations

Process Variation 
(Systematic + 

Random)

Inter-Die

Lot-to-lot
Wafter-to-

wafer (within 
lot)

Die-to-die 
(within wafer)

Intra-die (within die)

Correlated process 
variations

Independent 
mismatches

Environmental variations (e.g. 
Temperature, Supply voltage)

Local variations (e.g. 𝑊௘௙௙, 𝐿௘௙௙, 𝑉௧௛)

𝑊௘௙௙, 𝐿௘௙௙

𝜎 ∆𝑉௧௛  ~
1

𝑊௘௙௙. 𝐿௘௙௙

X. Li, J. Le, and L. T. Pileggi, “Statistical performance modeling and optimization,” vol. 1, no. 4, pp. 335–351.

Global variations (e.g. Vth due 
to doping concentration 
variation across wafers)



Analog behavioral models are typically constructed using hardware description languages (HDLs), such as SystemC-AMS and Verilog-
AMS.

− Use of equation-based approaches to model circuit behavior

− significantly faster simulation compared to SPICE

− may lack accuracy because of various simplifications

− application-specific, significant efforts required for adaptation

Functional Behavioral Modeling

[2] G. Zheng, S. P. Mohanty, E. Kougianos, and O. Garitselov, ‘Verilog-AMS-PAM: verilog-AMS integrated with parasitic-aware metamodels for ultra-fast and layout-accurate mixed-signal 
design exploration’, in Proceedings of the great lakes symposium on VLSI, 2012, pp. 351–356.
[3] M. D. Hershenson, S. P. Boyd, and T. H. Lee, ‘Optimal design of a CMOS op-amp via geometric programming’, IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 20, no. 1, pp. 1–21, Jan. 2001.
[4] G. Stehr, M. Pronath, F. Schenkel, H. Graeb, and K. Antreich, ‘Initial sizing of analog integrated circuits by centering within topology-given implicit specifications’, in ICCAD-2003. 
International Conference on Computer Aided Design (IEEE Cat. No.03CH37486), 2003, pp. 241–246
[5] H. Tang, ‘Symbolic Statistical Analysis of SNR Variation for Delta–Sigma Modulators’, IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 8, pp. 720–724, Aug. 
2007.


