
Model-Based Design
The Top-Level System Design Method

Alan P. Su, Ph.D.

ＥＥ, NCKU and eNeural Technologies, Inc.

Embedded Systems Development
From functional Models to Implementations

This lecture is inspired and derived from this book

What is a Model?

• How to translate ‘model’ into
Chinese?

• 模型 – very good! And, what
does a model do?

• Modeling – great! Right again!
• Then, how to describe the

behavior of ‘modeling’ in a simple
sentence?

•模特兒(model) 走秀(modeling)

• Simulate how you look in these
dresses

We use models to

simulate
target objects

Mathematical modeling, RTL modeling/simulation,
physical simulation, p-spice, TCAD, behavior simulation,

etc. etc. etc.

Why Model Based Design?

• Every engineering system starts from math.

• We use math to model a system, and the process is
mathmatical modeling, a.k.a. designing. Then math models thus
designed are used to simulate the system for verification.

• The design process is a cycle of mathmatical modeling,
simulation, verification, and modification till the system is fully
verified to meet the target functionality.

• And this design process, is the so-called Model Based Design.
And engineers like us do MBD everyday.

Model-Based Design (MBD)
• The Model-Based Design approach (MBD) prescribes the use of

models based on a mathematical formalism and executable
semantics to represent the controller system (to be realized in SW
and/or HW) and the controlled device or environment (often referred
to as Plant).

• Examples of available commercial tools for model-based
development are Simulink, SCADE, NI LabVIEW[1], and Modelica.
Academic projects that fit this definition are Ptolemy [2] and Metro II
[3]. These tools are feature-rich and allow the modeling of
continuous or discrete time, or hybrid systems in which functionality
is typically represented using a dataflow or an extended finite-state
machine formalism (or a combination of them).

1. Andrade, H. A., Kovner, S.: Software synthesis from data flow models for G and LabVIEW. In: Proceedings of the IEEE Asilomar Conference on Signals, Systems, and
Computers, 1705– 1709 (1998)

2. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proc. IEEE 91(1), 127–144
(2003)

3. Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A., Yang, G., Zeng, H., Zhu, Q.: A next-generation design framework for platform-based design.
DVCon, In (2007)

http://www.mathworks.com/
http://www.esterel-technologies.com/products/scade-suite/
https://www.ni.com/en-us/shop/labview.html
http://www.modelica.org/

Math Is A Model-Based Language

+

𝑎
𝑏

𝑐
+

𝑎
𝑏

𝑐

×

𝑑

Why MBD from the book

• Embedded systems are increasingly complex, function-rich and
required to perform tasks that are mission- or safety-critical.

• The use of models to specify the functional contents of the
system and its execution platform is today the most promising
solution to reduce the productivity gap and improve the quality,
correctness and modularity of software subsystems and
systems.

• Models allow to advance the analysis, validation, and
verification of properties in the design flow, and enable the
exploration and synthesis of cost-effective and provably correct
solutions.

Using MBD
• Traditional programming techniques, including object-oriented

languages, are not able to reduce the productivity gap, and
embedded system development processes demand new methods
and techniques that can improve the quality, correctness, and
modularity of systems and subsystems by advancing the analysis
and verification of properties as early as possible in the design flow.

• The use of models can help the analysis of the system properties
and verification by simulation, the documentation of the design
decisions, and possibly the automatic generation of the software
implementation. Each of the previous topics is the subject of a
number of relevant research domains, but all of them are also part of
the industrial practice, at least to some degree, backed by several
commercial products and standards.

ISO 26262 – The V Process

MBD

RTL

SystemC ?
??

Dataflow Models of Computation

• Dataflow models are characterized by a data-driven style of
control; data are processed while flowing through a network of
computation nodes. There are three major variants of dataflow
models in the literature, namely, dataflow process networks,
Kahn Process Networks, and dataflow synchronous languages.
Examples:

• Finite State Machine

• Petri net (PN) – by Carl Adam Petri in 1962

• Kahn Process Networks (KPN) – by Gilles Kahn in 1974

• Communicating Sequential Process (CSP) – by C. A. R Hoare in 1978

• Synchronous Data Flow (SDF) – by Edward A. Lee in 1987

Deterministic Finite Automata

• A Deterministic Finite Automata (DFA) is described by a five-
element tuple: (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where

• 𝑄 is a finite set of states

• Σ is a finite, nonempty input alphabet

• 𝛿: 𝑄 × Σ → 𝑄 is a series of transition functions

• 𝑞0 ∈ 𝑄 is the initial state

• 𝐹 ⊆ 𝑄 is the set of accepting states

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

DFA Examples

Petri net
A.K.A. Place/Transition net, is a mathematical modeling language of distributed systems

• Definition 1. A net is a 3-tuple 𝑁 = (𝑃, 𝑇, 𝐹) where
• 𝑃 and 𝑇 are disjoint finite sets of places and transitions, respectively
• 𝐹 ⊆ (𝑃 × 𝑇) ∪ 𝑇 × 𝑃 is a set of arcs (or flow relations)

• Definition 2. Given a net 𝑁 = (𝑃, 𝑇, 𝐹), a configuration is a set 𝐶 so that
𝐶 ⊆ 𝑃

• Definition 3. An elementary net is a net of the form 𝐸𝑁 = (𝑁, 𝐶) where
• 𝑁 = (𝑃, 𝑇, 𝐹) is a net
• 𝐶 is such that 𝐶 ⊆ 𝑃 is a configuration

• Definition 4. A Petri Net is a net of the form 𝑃𝑁 = (𝑁,𝑀,𝑊), which extends
the elementary net so that

• 𝑁 = (𝑃, 𝑇, 𝐹) is a net
• 𝑀:𝑃 → 𝑍 is a place multiset, where Z is a countable set. M extends the concept of

configuration and is commonly described with reference to Petri Net diagrams as
marking

• 𝑊:𝐹 → 𝑍 is an arc multiset, so that the count (or weight) for each arc is a measure of
the arc multiplicity

https://en.wikipedia.org/wiki/Petri_net

https://en.wikipedia.org/wiki/Petri_net

A Petri net Example

A Petri net with an enabled transition

The Petri net after the transition

One sample not longer exists

Kahn Process Network
A common model for describing signal processing systems where infinite streams of data are incrementally transformed by processes
executing in sequence or parallel

Execution model
• In a KPN, processes communicate via unbounded FIFO channels. Processes

read and write atomic data elements, or alternatively called tokens, from and to
channels.

• Writing to a channel is non-blocking, i.e. it always succeeds and does not stall the
process,

• while reading from a channel is blocking, i.e. a process that reads from an empty
channel will stall and can only continue when the channel contains sufficient data
items (tokens).

• Processes are not allowed to test an input channel for existence of tokens without
consuming them.

• A FIFO cannot be consumed by multiple processes, nor can multiple processes
produce to a single FIFO.

• Given a specific input (token) history for a process, the process must be
deterministic so that it always produces the same outputs (tokens).

• Timing or execution order of processes must not affect the result and therefore
testing input channels for tokens is forbidden.

https://en.wikipedia.org/wiki/Kahn_process_networks

https://en.wikipedia.org/wiki/Kahn_process_networks

KPN Processes
• A process need not read any input or have any input channels as it

may act as a pure data source

• A process need not write any output or have any output channels

• Testing input channels for emptiness (or non-blocking reads) could
be allowed for optimization purposes, but it should not affect outputs.
It can be beneficial and/or possible to do something in advance
rather than wait for a channel. For example, assume there were two
reads from different channels. If the first read would stall (wait for a
token) but the second read could be read a token directly, it could be
beneficial to read the second one first to save time, because the
reading itself often consumes some time (e.g. time for memory
allocation or copying).

Process Firing Semantics
• Assuming process P in the KPN above

is constructed so that it first reads data
from channel A, then channel B,
computes something and then writes
data to channel C, the execution model
of the process can be modeled with
the Petri net shown on the right. The
single token in the PE resource place
forbids that the process is executed
simultaneously for different input data.
When data arrives at channel A or B,
tokens are placed into places FIFO
A and FIFO B respectively. The
transitions of the Petri net are
associated with the respective I/O
operations and computation. When the
data has been written to channel C, PE
resource is filled with its initial marking
again allowing new data to be read.

Controlling
token

The FSM of KPN
• A process can be modeled as a finite

state machine that is in one of two
states:

• Active; the process computes or writes
data

• Wait; the process is blocked (waiting) for
data

• Assuming the finite state machine
reads program elements associated
with the process, it may read three
kinds of tokens, which are "Compute",
"Read" and "Write token". Additionally,
in the Wait state it can only come back
to Active state by reading a special
"Get token" which means the
communication channel associated
with the wait contains readable data.

Boundedness of Channels
• A channel is strictly bounded by 𝑏 if it has at most 𝑏 unconsumed tokens for any

possible execution. A KPN is strictly bounded by 𝑏 if all channels are strictly
bounded by 𝑏.

• The number of unconsumed tokens depends on the execution order (scheduling)
of processes. A spontaneous data source could produce arbitrarily many tokens
into a channel if the scheduler would not execute processes consuming those
tokens.

• A real application can not have unbounded FIFOs and therefore scheduling and
maximum capacity of FIFOs must be designed into a practical implementation.
The maximum capacity of FIFOs can be handled in several ways:

• FIFO bounds can be mathematically derived in design to avoid FIFO overflows. This is
however not possible for all KPNs. It is an undecidable problem to test whether a KPN is
strictly bounded by 𝑏. Moreover, in practical situations, the bound may be data dependent.

• FIFO bounds can be grown on demand.
• Blocking writes can be used so that a process blocks if a FIFO is full. This approach may

unfortunately lead to an artificial deadlock unless the designer properly derives safe
bounds for FOFIs. Local artificial detection at run-time may be necessary to guarantee the
production of the correct output.

Communicating Sequential Process
Initially a concurrent programming language and later developed into a process algebra. Its industrial use to system design is in
safety-critical systems.

• CSP allows the description of systems in terms of component
processes that operate independently and interact with each other
solely through message-passing communication. However,
the "Sequential" part of the CSP name needs to be carefully
considered, since modern CSP allows component processes to be
defined both as sequential processes, and as the parallel
composition of more primitive processes. The relationships between
different processes, and the way each process communicates with
its environment, are described using various process
algebraic operators. Using this algebraic approach, quite complex
process descriptions can be easily constructed from a few primitive
elements.

• Informal descriptions to CSP please refer to
https://en.wikipedia.org/wiki/Communicating_sequential_processes

https://en.wikipedia.org/wiki/Communicating_sequential_processes

Synchronous Data Flow
is a restriction of KPN where nodes produce and consume a fixed number of data items per firing. This allows static scheduling

• Synchronous Data Flow (SDF) is represented as a graph
• – Node (actor): Computation

• – Edge: First In First Out (FIFO) Queue

• Each edge has two weights: produce rate and consume
rate

• Each edge can also have initial data

• Formally, SDF is a 3-tuple (𝑁, 𝐸, 𝐸𝑝,𝑐,𝑖)
• 𝑁 is a set of nodes

• 𝐸 is a set of edges

• 𝐸𝑝,𝑐,𝑖 where

• 𝑝 is the produce rate

• 𝑐 is the consume rate

• 𝑖 is the initial data

A: fires 8 times
B: fires 3 times
C: fires 6 times
D: fires 3 times
E: fires 6 times

Example: Adder, Adder-Multiplier

+

𝑎

𝑏

𝑐
+

𝑎

𝑏

𝑐

×

𝑑

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

SDF Examples

SDF without initial tokens SDF with initial tokens and loop

Consistent SDF Simulation I

A fires once B fires ones C fires twice

Periodic schedule: ABCC

Consistent SDF Simulation II

A fires once B fires ones C fires twice

Periodic schedule: ABCC

Periodic Schedule and Consistency

• Firing sequence of a SDF is called a schedule

• A periodic schedule of an SDF clears all channels and returns
to its initial status after each node repeats execution a specific
finite number of times

• Periodic schedule permits SDF can process unbounded data
with bounded memory

• A SDF is consistent iff (if-and-only-if) a periodic schedule exists

Inconsistent SDF

A fires once B fires ones C fires twice
and 1 token cannot
be consumed

SDF

No periodic schedule

Periodic Schedule and Consistency

• Topology Matrix
• Each row presents the edge

• Each column presents a node

• (𝑖, 𝑗): the number of data items placed on 𝑖
after each invocation of 𝑗

• If 𝑖 is an input channel for 𝑗, element (𝑖, 𝑗) is
negative

𝐴 𝐵 𝐶

𝑐 −𝑒 0
𝑑 0 −𝑓
0 𝑖 −𝑔

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶

Periodic Schedule and Consistency

𝐴 𝐵 𝐶
1 −1 0
2 0 −1
0 2 −1

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶

Rank = 2

◼ A necessary condition of a periodic
schedule

◼ The rank of the topology matrix is 𝑠 − 1,
where 𝑠 is the number of nodes

◼ Please refer to Lee’s 87 paper for the proof

Periodic Schedule and Consistency

• A necessary condition of a
periodic schedule

• The rank of the topology
matrix is 𝑠 − 1, where 𝑠 is the
number of nodes

• Please refer to Lee’s 87
paper for the proof

Rank = 3 > 2

𝐴 𝐵 𝐶
1 −1 0
2 0 −1
0 1 −1

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶

Example: Part of JPEG Transcoder

PACT 2010 “An Empirical Characterization
of Stream Programs and its Implications for
Language and Compiler Design ”

Example Systems Use MBD

• Communications – routers, switches, modem

• Image and/or acoustic processing – CODEC, video
broadcasting

• Luggage conveyor systems

• Manufacturing – assembly line

• Vehicles - engine, fuel injection, powertrain

The End
Thanks to you all!

	Slide 1: Model-Based Design The Top-Level System Design Method
	Slide 2: Embedded Systems Development From functional Models to Implementations
	Slide 3: What is a Model?
	Slide 4
	Slide 5: Why Model Based Design?
	Slide 6: Model-Based Design (MBD)
	Slide 7: Math Is A Model-Based Language
	Slide 8: Why MBD from the book
	Slide 9: Using MBD
	Slide 10: ISO 26262 – The V Process
	Slide 11: Dataflow Models of Computation
	Slide 12: Deterministic Finite Automata
	Slide 13: DFA Examples
	Slide 14: Petri net A.K.A. Place/Transition net, is a mathematical modeling language of distributed systems
	Slide 15: A Petri net Example
	Slide 16: Kahn Process Network A common model for describing signal processing systems where infinite streams of data are incrementally transformed by processes executing in sequence or parallel
	Slide 17: KPN Processes
	Slide 18: Process Firing Semantics
	Slide 19: The FSM of KPN
	Slide 20: Boundedness of Channels
	Slide 21: Communicating Sequential Process Initially a concurrent programming language and later developed into a process algebra. Its industrial use to system design is in safety-critical systems.
	Slide 22: Synchronous Data Flow is a restriction of KPN where nodes produce and consume a fixed number of data items per firing. This allows static scheduling
	Slide 23: Example: Adder, Adder-Multiplier
	Slide 24: SDF Examples
	Slide 25: Consistent SDF Simulation I
	Slide 26: Consistent SDF Simulation II
	Slide 27: Periodic Schedule and Consistency
	Slide 28: Inconsistent SDF
	Slide 29: Periodic Schedule and Consistency
	Slide 30: Periodic Schedule and Consistency
	Slide 31: Periodic Schedule and Consistency
	Slide 32: Example: Part of JPEG Transcoder
	Slide 33: Example Systems Use MBD
	Slide 34: The End

