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From functional Models to Implementations

This lecture is inspired and derived from this book



What is a Model?

• How to translate ‘model’ into 
Chinese?

• 模型 – very good! And, what 
does a model do?

• Modeling – great! Right again!
• Then, how to describe the 

behavior of ‘modeling’ in a simple 
sentence?

•模特兒(model) 走秀(modeling)

• Simulate how you look in these 
dresses



We use models to 

simulate
target objects

Mathematical modeling, RTL modeling/simulation,
physical simulation, p-spice, TCAD, behavior simulation, 

etc. etc. etc. 



Why Model Based Design?

• Every engineering system starts from math.

• We use math to model a system, and the process is 
mathmatical modeling, a.k.a. designing. Then math models thus 
designed are used to simulate the system for verification.

• The design process is a cycle of mathmatical modeling, 
simulation, verification, and modification till the system is fully 
verified to meet the target functionality.

• And this design process, is the so-called Model Based Design. 
And engineers like us do MBD everyday.



Model-Based Design (MBD)
• The Model-Based Design approach (MBD) prescribes the use of 

models based on a mathematical formalism and executable 
semantics to represent the controller system (to be realized in SW 
and/or HW) and the controlled device or environment (often referred 
to as Plant).

• Examples of available commercial tools for model-based 
development are Simulink, SCADE, NI LabVIEW[1], and Modelica. 
Academic projects that fit this definition are Ptolemy [2] and Metro II 
[3]. These tools are feature-rich and allow the modeling of 
continuous or discrete time, or hybrid systems in which functionality 
is typically represented using a dataflow or an extended finite-state 
machine formalism (or a combination of them).

1. Andrade, H. A., Kovner, S.: Software synthesis from data flow models for G and LabVIEW. In: Proceedings of the IEEE Asilomar Conference on Signals, Systems, and 
Computers, 1705– 1709 (1998)

2. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong, Y.: Taming heterogeneity-the Ptolemy approach. Proc. IEEE 91(1), 127–144 
(2003) 

3. Davare, A., Densmore, D., Meyerowitz, T., Pinto, A., Sangiovanni-Vincentelli, A., Yang, G., Zeng, H., Zhu, Q.: A next-generation design framework for platform-based design. 
DVCon, In (2007) 

http://www.mathworks.com/
http://www.esterel-technologies.com/products/scade-suite/
https://www.ni.com/en-us/shop/labview.html
http://www.modelica.org/


Math Is A Model-Based Language
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Why MBD from the book

• Embedded systems are increasingly complex, function-rich and 
required to perform tasks that are mission- or safety-critical.

• The use of models to specify the functional contents of the 
system and its execution platform is today the most promising 
solution to reduce the productivity gap and improve the quality, 
correctness and modularity of software subsystems and 
systems.

• Models allow to advance the analysis, validation, and 
verification of properties in the design flow, and enable the 
exploration and synthesis of cost-effective and provably correct
solutions. 



Using MBD
• Traditional programming techniques, including object-oriented 

languages, are not able to reduce the productivity gap, and 
embedded system development processes demand new methods 
and techniques that can improve the quality, correctness, and 
modularity of systems and subsystems by advancing the analysis 
and verification of properties as early as possible in the design flow. 

• The use of models can help the analysis of the system properties 
and verification by simulation, the documentation of the design 
decisions, and possibly the automatic generation of the software 
implementation. Each of the previous topics is the subject of a  
number of relevant research domains, but all of them are also part of 
the industrial practice, at least to some degree, backed by several 
commercial products and standards.



ISO 26262 – The V Process

MBD

RTL

SystemC ?
??



Dataflow Models of Computation

• Dataflow models are characterized by a data-driven style of 
control; data are processed while flowing through a network of 
computation nodes. There are three major variants of dataflow 
models in the literature, namely, dataflow process networks, 
Kahn Process Networks, and dataflow synchronous languages. 
Examples:

• Finite State Machine

• Petri net (PN) – by Carl Adam Petri in 1962

• Kahn Process Networks (KPN) – by Gilles Kahn in 1974

• Communicating Sequential Process (CSP) – by C. A. R Hoare in 1978

• Synchronous Data Flow (SDF) – by Edward A. Lee in 1987



Deterministic Finite Automata

• A Deterministic Finite Automata (DFA) is described by a five-
element tuple: (𝑄, Σ, 𝛿, 𝑞0, 𝐹), where

• 𝑄 is a finite set of states

• Σ is a finite, nonempty input alphabet

• 𝛿: 𝑄 × Σ → 𝑄 is a series of transition functions

• 𝑞0 ∈ 𝑄 is the initial state

• 𝐹 ⊆ 𝑄 is the set of accepting states

https://en.wikipedia.org/wiki/Deterministic_finite_automaton

https://en.wikipedia.org/wiki/Deterministic_finite_automaton


DFA Examples



Petri net
A.K.A. Place/Transition net, is a mathematical modeling language of distributed systems

• Definition 1. A net is a 3-tuple 𝑁 = (𝑃, 𝑇, 𝐹) where 
• 𝑃 and 𝑇 are disjoint finite sets of places and transitions, respectively
• 𝐹 ⊆ (𝑃 × 𝑇) ∪ 𝑇 × 𝑃 is a set of arcs (or flow relations)

• Definition 2. Given a net 𝑁 = (𝑃, 𝑇, 𝐹), a configuration is a set 𝐶 so that 
𝐶 ⊆ 𝑃

• Definition 3. An elementary net is a net of the form 𝐸𝑁 = (𝑁, 𝐶) where
• 𝑁 = (𝑃, 𝑇, 𝐹) is a net
• 𝐶 is such that 𝐶 ⊆ 𝑃 is a configuration

• Definition 4. A Petri Net is a net of the form 𝑃𝑁 = (𝑁,𝑀,𝑊), which extends 
the elementary net so that

• 𝑁 = (𝑃, 𝑇, 𝐹) is a net
• 𝑀:𝑃 → 𝑍 is a place multiset, where Z is a countable set. M extends the concept of 

configuration and is commonly described with reference to Petri Net diagrams as 
marking

• 𝑊:𝐹 → 𝑍 is an arc multiset, so that the count (or weight) for each arc is a measure of 
the arc multiplicity

https://en.wikipedia.org/wiki/Petri_net

https://en.wikipedia.org/wiki/Petri_net


A Petri net Example

A Petri net with an enabled transition

The Petri net after the transition

One sample not longer exists



Kahn Process Network
A common model for describing signal processing systems where infinite streams of data are incrementally transformed by processes 
executing in sequence or parallel

Execution model
• In a KPN, processes communicate via unbounded FIFO channels. Processes 

read and write atomic data elements, or alternatively called tokens, from and to 
channels.

• Writing to a channel is non-blocking, i.e. it always succeeds and does not stall the 
process, 

• while reading from a channel is blocking, i.e. a process that reads from an empty 
channel will stall and can only continue when the channel contains sufficient data 
items (tokens). 

• Processes are not allowed to test an input channel for existence of tokens without 
consuming them. 

• A FIFO cannot be consumed by multiple processes, nor can multiple processes 
produce to a single FIFO. 

• Given a specific input (token) history for a process, the process must be 
deterministic so that it always produces the same outputs (tokens). 

• Timing or execution order of processes must not affect the result and therefore 
testing input channels for tokens is forbidden.

https://en.wikipedia.org/wiki/Kahn_process_networks

https://en.wikipedia.org/wiki/Kahn_process_networks


KPN Processes
• A process need not read any input or have any input channels as it 

may act as a pure data source

• A process need not write any output or have any output channels

• Testing input channels for emptiness (or non-blocking reads) could 
be allowed for optimization purposes, but it should not affect outputs. 
It can be beneficial and/or possible to do something in advance 
rather than wait for a channel. For example, assume there were two 
reads from different channels. If the first read would stall (wait for a 
token) but the second read could be read a token directly, it could be 
beneficial to read the second one first to save time, because the 
reading itself often consumes some time (e.g. time for memory 
allocation or copying).



Process Firing Semantics 
• Assuming process P in the KPN above 

is constructed so that it first reads data 
from channel A, then channel B, 
computes something and then writes 
data to channel C, the execution model 
of the process can be modeled with 
the Petri net shown on the right. The 
single token in the PE resource place 
forbids that the process is executed 
simultaneously for different input data. 
When data arrives at channel A or B, 
tokens are placed into places FIFO 
A and FIFO B respectively. The 
transitions of the Petri net are 
associated with the respective I/O 
operations and computation. When the 
data has been written to channel C, PE 
resource is filled with its initial marking 
again allowing new data to be read.

Controlling
token



The FSM of KPN
• A process can be modeled as a finite 

state machine that is in one of two 
states:

• Active; the process computes or writes 
data

• Wait; the process is blocked (waiting) for 
data

• Assuming the finite state machine 
reads program elements associated 
with the process, it may read three 
kinds of tokens, which are "Compute", 
"Read" and "Write token". Additionally, 
in the Wait state it can only come back 
to Active state by reading a special 
"Get token" which means the 
communication channel associated 
with the wait contains readable data.



Boundedness of Channels
• A channel is strictly bounded by 𝑏 if it has at most 𝑏 unconsumed tokens for any 

possible execution. A KPN is strictly bounded by 𝑏 if all channels are strictly 
bounded by 𝑏.

• The number of unconsumed tokens depends on the execution order (scheduling) 
of processes. A spontaneous data source could produce arbitrarily many tokens 
into a channel if the scheduler would not execute processes consuming those 
tokens.

• A real application can not have unbounded FIFOs and therefore scheduling and 
maximum capacity of FIFOs must be designed into a practical implementation. 
The maximum capacity of FIFOs can be handled in several ways:

• FIFO bounds can be mathematically derived in design to avoid FIFO overflows. This is 
however not possible for all KPNs. It is an undecidable problem to test whether a KPN is 
strictly bounded by 𝑏. Moreover, in practical situations, the bound may be data dependent.

• FIFO bounds can be grown on demand.
• Blocking writes can be used so that a process blocks if a FIFO is full. This approach may 

unfortunately lead to an artificial deadlock unless the designer properly derives safe 
bounds for FOFIs. Local artificial detection at run-time may be necessary to guarantee the 
production of the correct output. 



Communicating Sequential Process
Initially a concurrent programming language and later developed into a process algebra. Its industrial use to system design is in 
safety-critical systems.

• CSP allows the description of systems in terms of component 
processes that operate independently and interact with each other 
solely through message-passing communication. However, 
the "Sequential" part of the CSP name needs to be carefully 
considered, since modern CSP allows component processes to be 
defined both as sequential processes, and as the parallel 
composition of more primitive processes. The relationships between 
different processes, and the way each process communicates with 
its environment, are described using various process 
algebraic operators. Using this algebraic approach, quite complex 
process descriptions can be easily constructed from a few primitive 
elements.

• Informal descriptions to CSP please refer to 
https://en.wikipedia.org/wiki/Communicating_sequential_processes

https://en.wikipedia.org/wiki/Communicating_sequential_processes


Synchronous Data Flow
is a restriction of KPN where nodes produce and consume a fixed number of data items per firing. This allows static scheduling

• Synchronous Data Flow (SDF) is represented as a graph 
• – Node (actor): Computation 

• – Edge: First In First Out (FIFO) Queue 

• Each edge has two weights: produce rate and consume 
rate 

• Each edge can also have initial data 

• Formally, SDF is a 3-tuple (𝑁, 𝐸, 𝐸𝑝,𝑐,𝑖)
• 𝑁 is a set of nodes

• 𝐸 is a set of edges

• 𝐸𝑝,𝑐,𝑖 where

• 𝑝 is the produce rate

• 𝑐 is the consume rate

• 𝑖 is the initial data

A: fires 8 times
B: fires 3 times
C: fires 6 times
D: fires 3 times
E: fires 6 times



Example: Adder, Adder-Multiplier
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SDF Examples

SDF without initial tokens SDF with initial tokens and loop



Consistent SDF Simulation I

A fires once B fires ones C fires twice

Periodic schedule: ABCC



Consistent SDF Simulation II

A fires once B fires ones C fires twice

Periodic schedule: ABCC



Periodic Schedule and Consistency

• Firing sequence of a SDF is called a schedule

• A periodic schedule of an SDF clears all channels and returns 
to its initial status after each node repeats execution a specific 
finite number of times

• Periodic schedule permits SDF can process unbounded data 
with bounded memory

• A SDF is consistent iff (if-and-only-if) a periodic schedule exists



Inconsistent SDF

A fires once B fires ones C fires twice
and 1 token cannot
be consumed

SDF

No periodic schedule



Periodic Schedule and Consistency

• Topology Matrix 
• Each row presents the edge

• Each column presents a node

• (𝑖, 𝑗): the number of data items placed on 𝑖
after each invocation of 𝑗

• If 𝑖 is an input channel for 𝑗, element (𝑖, 𝑗) is 
negative 

𝐴 𝐵 𝐶

𝑐 −𝑒 0
𝑑 0 −𝑓
0 𝑖 −𝑔

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶



Periodic Schedule and Consistency

𝐴 𝐵 𝐶
1 −1 0
2 0 −1
0 2 −1

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶

Rank = 2

◼ A necessary condition of a periodic 
schedule

◼ The rank of the topology matrix is 𝑠 − 1, 
where 𝑠 is the number of nodes

◼ Please refer to Lee’s 87 paper for the proof 



Periodic Schedule and Consistency

• A necessary condition of a 
periodic schedule

• The rank of the topology 
matrix is 𝑠 − 1, where 𝑠 is the 
number of nodes

• Please refer to Lee’s 87 
paper for the proof 

Rank = 3 > 2

𝐴 𝐵 𝐶
1 −1 0
2 0 −1
0 1 −1

𝐴 → 𝐵
𝐴 → 𝐶
𝐵 → 𝐶



Example: Part of JPEG Transcoder

PACT 2010 “An Empirical Characterization 
of Stream Programs and its Implications for
Language and Compiler Design ” 



Example Systems Use MBD

• Communications – routers, switches, modem

• Image and/or acoustic processing – CODEC, video 
broadcasting

• Luggage conveyor systems

• Manufacturing – assembly line

• Vehicles - engine, fuel injection, powertrain



The End
Thanks to you all!
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