
Building a Virtual Driver for
Emulator

CHEN CHIH-CHIANG

Agenda
• External device on the emulator

• Physical device emulation
• Virtual device emulation

• What is a Virtual Driver?

• Virtual System Overview
• Hardware protocol virtualize.
• Bind to the host environment.

• System emulator
• GSFIFO Input Stream modeling

• Virtual Device Examples.
• Example: DMI
• Example: Mass storage device
• Example: Network

• Experiment result
• Full platform virtualization

• Future scope

External device on the emulator (1)
• Physical device emulation

• IO can connect with physical input/output pins
• Hard to connect many devices with physical pins

• For example:
• UART 2 pins + ethernet MAC 16 pins + JATG 4 pins + SD card 10 pins = 32 pins for 1 system emulation

• One emulator system can simulate up to 8 systems at the same time. Total needs 32*8 = 256 pins on different
pins

Emulator system

SOC system IO speed
bridge

Physical output pins

Physical input pins

Physical
device

External device on the emulator (2)
• Virtual device emulation

• All protocol emulation complete on the virtual device
• Protocol service action with the host system, For example:

• UART send a character to the host system and output on the console

• SD card handle block memory act as file IO on the host

• Easy to expand emulation system device without physical limitation.

Emulator system

SOC system Virtual device

Host system

Host service

What is Virtual Driver?
• Simulated or emulated system issues the signal to an external host

and receives the signal from the external host.

Emulated system
Virtual
driver

Host system

Host service

signal

SOC

Threading

Hardware Protocol Virtualize
• The signal issues modeling as output FIFO

• The signal receives modeling as input FIFO.

• Host service holds another thread to handle input/output FIFO.

• For example:
• UART TX
• UART RX

Emulated system

SOC

UART
TX

UART
RX

FIFO

FIFO

Host service

Bind to the host environment
• The input/output FIFO can be binding as a system signal channel

• SOCK: use send/recv function to connect FIFO.
• FILE IO: use read/write function to connect FIFO.
• UNIX PIPE: use Linux redirect input/output function to connect FIFO.

• Example
• Using socat (PIPE) or ncat to bind the UART to minicom for UART virtualize

Threading

Emulated system

SOC

UART
TX

UART
RX

FIFO

FIFO

Host service

minicom

socat

Palladium Emulator
• Palladium support Systemverilog DPI

• Virtualize the protocol to DPI-call
• High-speed communication between emulator and system service

Palladium

SOC

UART
TX

UART
RX int dpi_fifo_receive_stream (output bit [7:0] rx_data);

void dpi_fifo_send_stream (input byte unsigned tx_data);

Palladium

• Receive data from virtual drive need do context switch
• Very slow and emulation overhead is very big.

• Palladium/Protium support asynchronous communication between the emulator
and host system.

• the GSFIFO INPUT STREAM (GSF_IS) help to virtual driver receiver as input
stream on Palladium/Protium.

UART
RX

dpi_fifo_receive_stream

GSFIFO
output

GSFIFO
inputReturn Stream valid return valid

DPI callCall

Check valid

Palladium GSFIFO Input Stream modeling

Virtual Device Examples. (DMI)

• DMI (Debug module Interface)
• The RISCV-DMI virtual driver to communicate between the ICE and Andes Core
• Direct access debug module to speed up the debug flow and handle memory

access

Emulated system

SOC DMI

Host service

ICE (in-
circuit-
emulator)SOCK

DMI Bus

GDB
remote
target

Virtual Device Examples. (Mass storage device)

• SD card can be modeling as block device
• Using NBD protocol to model as virtual block device
• NBD service can mount RAW image or qcow image

Emulated system

SOC SD model

Host service

NBD
(Network Block

Device)

SOCKSD CARD Bus RAW image

qcow2 image

Virtual Device Examples. (Network)
• Model the MAC MII protocol as packet FIFO

• Exchange data with User-level TCP stack and issue packet to remote target and
receive the new packet.

Emulated system

SOC MAC Phy
model

Host service

User-Level TCP
Stack

Packet
MII bus

Port remapping

Port forwarding

Full Platform Virtualization
• Andes AE350 platform virtualization

• DMI <-> GDB
• UART <-> minicom
• MII <-> User-level TCP stack
• SD <-> NBD

• Linux runtime
• All system emulation, like on the

FPGA emulation
• Most SOC input/output is virtually

connected to the host service.
• Profiling the performance log.

Palladium

DMI

X86 Linux Host

Andes AE350 SOC

Andes RISC-V
AX65
• 13 stags
• 4-ways issue
• out-of-order superscalar
• Up to 8 cores SMP with

cache coherence

GDB
* Load Linux kernel,
booting

UART

minicom
* Interaction with Linux
shell and display on user
screen

MII NFS service
* Linux mount NFS file
system and load test
program

SD
NBD service
* Mount image as SD
card

Future Scope
• Full virtualized device

• Virtual IO on Linux kernel
• Virtualize PS/2 device

• Mouse

• Keyboard

• Virtual block device, network, PCIe

• More complex system
• Validate the Andes Core performance.
• Emulate the real chip live in the

virtual world.

Emulated system

SOC virtio_if

Host service

libvirtio

PS/2 model

Block device

Ring buffer

Network

PCIe

DMA

intr

