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External device on the emulator (1)
• Physical device emulation

• IO can connect with physical input/output pins
• Hard to connect many devices with physical pins

• For example:
• UART 2 pins + ethernet MAC 16 pins + JATG 4 pins + SD card 10 pins = 32 pins for 1 system emulation

• One emulator system can simulate up to 8 systems at the same time. Total needs 32*8 = 256 pins on different 
pins

Emulator system

SOC system IO speed 
bridge

Physical output pins

Physical input pins

Physical 
device



External device on the emulator (2)
• Virtual device emulation

• All protocol emulation complete on the virtual device
• Protocol service action with the host system, For example:

• UART send a character to the host system and output on the console

• SD card handle block memory act as file IO on the host

• Easy to expand emulation system device without physical limitation.

Emulator system

SOC system Virtual device

Host system

Host service



What is Virtual Driver?
• Simulated or emulated system issues the signal to an external host 

and receives the signal from the external host.
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Threading

Hardware Protocol Virtualize
• The signal issues modeling as output FIFO

• The signal receives modeling as input FIFO.

• Host service holds another thread to handle input/output FIFO.

• For example:
• UART TX
• UART RX
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Bind to the host environment
• The input/output FIFO can be binding as a system signal channel

• SOCK: use send/recv function to connect FIFO.
• FILE IO: use read/write function to connect FIFO.
• UNIX PIPE: use Linux redirect input/output function to connect FIFO.

• Example
• Using socat (PIPE) or ncat to bind the UART to minicom for UART virtualize
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Palladium Emulator
• Palladium support Systemverilog DPI

• Virtualize the protocol to DPI-call
• High-speed communication between emulator and system service
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Palladium

• Receive data from virtual drive need do context switch
• Very slow and emulation overhead is very big.

• Palladium/Protium support asynchronous communication between the emulator 
and host system.

• the GSFIFO INPUT STREAM (GSF_IS) help to virtual driver receiver as input 
stream on Palladium/Protium.
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Virtual Device Examples. (DMI)

• DMI (Debug module Interface)
• The RISCV-DMI virtual driver to communicate between the ICE and Andes Core
• Direct access debug module to speed up the debug flow and handle memory 

access
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Virtual Device Examples. (Mass storage device)

• SD card can be modeling as block device
• Using NBD protocol to model as virtual block device
• NBD service can mount RAW image or qcow image
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Virtual Device Examples. (Network)
• Model the MAC MII protocol as packet FIFO

• Exchange data with User-level TCP stack and issue packet to remote target and 
receive the new packet.
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Full Platform Virtualization
• Andes AE350 platform virtualization

• DMI <-> GDB
• UART <-> minicom
• MII <-> User-level TCP stack
• SD <-> NBD

• Linux runtime
• All system emulation, like on the 

FPGA emulation
• Most SOC input/output is virtually 

connected to the host service.
• Profiling the performance log.
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Future Scope
• Full virtualized device

• Virtual IO on Linux kernel
• Virtualize PS/2 device

• Mouse

• Keyboard

• Virtual block device, network, PCIe

• More complex system
• Validate the Andes Core performance.
• Emulate the real chip live in the 

virtual world.
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