

Improve the quality of SystemC IPs through coverage-

driven random verification

Trung Pham, Renesas Electronics Corporation, Ho Chi Minh City, Vietnam (trung.pham.zn@renesas.com)

Huy Phan, Renesas Electronics Corporation, Ho Chi Minh City, Vietnam (huy.phan.wh@renesas.com)

Masayuki Masuda, Renesas Electronics Corporation, Tokyo, Japan (masayuki.masuda.gx@renesas.com)

Abstract—The development of SystemC IPs is mainly focused on a short period. Realizing that SystemC IPs can be improved

to get higher quality while keeping a good period, we apply UVM to SystemC verification to add coverage-driven random

verification besides directed testing. Our solution has the same structure as UVM in SystemVerilog. It provides constraint

random by CRAVE and functional coverage by FC4SC. We tried it on a verified SystemC IP. Using directed testing, it originally

took 18 man-months and found 127 bugs. We spent about 21 man-months on coverage-driven random verification and found 38

more bugs, 50% of which are hard cases.

Keywords—SystemC IP, coverage-driven random verification, UVM SystemC, CRAVE, FC4SC

I. INTRODUCTION

SystemC IPs [1] are expected to reduce the cost of software development and shortening the development period becomes

more important. Of course, the verification environment and verification methodology must not be complicated. Traditional

verification based on directed testing was a choice of SystemC IPs verification.

Unfortunately, the limitation of directed testing is indisputable: verifiers need to create individual cases, possibly leading

to verification omissions. Rather, a huge effort is necessary to ensure verification coverage (mostly, the effort is reduced at

the expense of verification coverage). Besides, verification quality, goals and progress are unclear. It is hard to manage

verification requirements and schedules. We realized that the verification method and planning should be changed to improve

verification quality while keeping the development period. This is where the UVM SystemC [2] and coverage-driven

verification [3] inspired us.

This paper gives an introduction and results of coverage-driven random verification using UVM [4] technologies

(verification environment by UVM SystemC library, constrained random stimulus by CRAVE library [5], functional

coverage by FC4SC library [6]). Through the results, we can see how efficiently it works.

II. PLAN

This paper shows a plan to improve the 2 most typical things which can affect the verification process. We applied

coverage-driven random verification using UVM SystemC to SystemC IP to prove that these improvements improve

verification quality. The SystemC IP has already been verified using direct testing, and we evaluate the effectiveness of

the coverage-driven random verification by comparing the results of both verifications (in IV. RESULT).

A. Verification plan improvement

Verifiers need to prepare necessary documents (Target specification) and brainstorm all necessary verification features

for the creation of verification planning (planning tied to IP specifications helps to manage verification requirements and

schedule, and planning tied to functional coverage clarifies verification goals and progress). Moreover, the coverage of IP

specifications also clarifies verification quality. Verification planning is not a one-time effort, it can be refined throughout

the course of a project.

B. Verification environment improvement

Verifiers need to build a new UVM SystemC IPs environment that followed UVM standardization. It helps to achieve

verification goals through effective code reuse (reuse verification components between environments and hierarchies, reuse

2

verification environments between projects). Verifiers can save the verification period by automatic stimulus generation.

The constrained random stimulus hits various cases efficiently.

III. IMPLEMENTATION

A. Verification plan

The following steps must proceed to ensure improved commitment:

• Investigate verified IP specifications and describe the priority of features in the document.

• Identify supported features and covergroup/coverpoint [7] based on discussion relating to priority between the

SystemC IP design team and our verification team. Figure 1 shows an example of covergroup/coverpoint

definition.

Figure 1. Example of covergroup/coverpoint definition

• Identify verification environment structure (where to implement checkers, components, what attributes should be

checked, etc.).

• Create a schedule that separates the verification period into 2 phases to ensure coverage of IP specifications (phase

1 plan to verify all supported features by randomized testing and phase 2 plan to cover remaining points by well-

constrained values). Figure 2 shows an example of a priority judgment and verification schedule.

Figure 2. Example of priority judgment and verification schedule

3

• Create a list of scanned sentences from verified IP specifications and map them to created tests in phase 1, if any

items have not been covered yet, record and verify them in phase 2. Figure 3 shows an example of a list of

scanned sentences.

Figure 3. Example of a list of scanned sentences

Verification can be closed if items created from a list of scanned sentences from verified IP specifications are verified

and covergroup/coverpoint are covered (in case of uncovered points/crosses, create more tests to cover if necessary).

B. Verification environment

Following the UVM Test Bench architecture [8] of SystemVerilog, the new UVM SystemC IPs environment architecture

should be the same. It includes basic components (Top, Test, Environment, Agent, Sequencer, Driver, Monitor and

Scoreboard). Because most SystemC IPs have TLM [9] interface for bus access (e.g., registers access), the Driver must

support driving TLM sockets through TLM Initiator in addition to driving the Virtual interface. Figure 4 shows a block

diagram of the verification environment.

Figure 4. Block diagram of the verification environment

Top

Test

Env

SequenceLib

Scoreboard

Configuration

SlaveAgent

SlaveMonitor

Coverage

DUT

DUT IF

TLM

Initiator

UVM configuration database

Virtual interface

 Event trigger APIs

TLM transport APIs

MasterAgent

Sequencer

MasterMonitor

Coverage

Driver

4

• Except for the “DUT” (Design Under Test) and “TLM Initiator” modules, others must include the UVM SystemC

library to build a UVM Test Bench architecture.

• CRAVE library is included in the “SequenceLib” module which contains all tests of verifiers. It allows all tests to

be simulated and randomized with constraints using randomize_with() or pre-defined macro UVM_DO_WITH().

Figure 5 shows an example of sending constrained random values.

Figure 5. Example of sending constrained random value

• FC4SC library is included in the “Coverage” module, the Functional Coverage Group definition (defines

covergroup/coverpoint). Each time the transaction/event/signal/data is received from the “Monitors” component, it

starts the sampling and records it as HTML coverage report data. Figure 6 shows an example of the Functional

Coverage Group definition.

Figure 6. Example of Functional Coverage Group definition

C. Build options

Table I shows the build options which were used.

5

Table I. Build options

Include paths INCDIRS = -I$(SYSTEMC)/include \

 -I$(UVM_SYSTEMC_HOME)/include \

 -I$(CRAVE_HOME)/build/root/include \

 -I$(CRAVE_HOME)/metaSMT/src \

 -I$(CRAVE_HOME)/deps/cudd-3.0.0/include \

 -I$(CRAVE_BOOST_ROOT)/include \

 -I$(FC4SC_INCLUDE_DIR) \

 -I$(FC4SC_INCLUDE_DIR)/fc4sc_headers

Library paths LIBDIRS = -L$(SYSTEMC)/ lib-linux64 \

 -L$(UVM_SYSTEMC_HOME)/lib-linux64 \

 -L$(CRAVE_HOME)/build/root/lib \

 -L$(CRAVE_HOME)/deps/cudd-3.0.0/lib \

 -L$(CRAVE_BOOST_ROOT)/lib

Library dependencies LIBS = -lsystemc \

 -luvm-systemc \

 -lcrave -lmetaSMT \

 -lCUDD_obj -lCUDD_cudd -lCUDD_dddmp -lCUDD_epd -lCUDD_mtr -lCUDD_st -lCUDD_util \

 -lboost_filesystem -lboost_system \

 -lm -ldl -lutil -lpthread

D. Tool Version

Table II shows versions of tools that were used.

Table II. Version of tools

Tool Version Remark

Compiler GNU/ GCC 4.9.3 -

Library

Accellera/ SystemC 2.3.1a -

Accellera/ UVM-SystemC 1.0-beta3 Universal Verification Methodology for SystemC

CRAVE 2018-06-14 Constrained Random Verification Environment

FC4SC 2.1.1 Functional Coverage for SystemC

IV. RESULT

Coverage-driven random verification using UVM was applied to a verified SystemC IP. This IP was verified using the

directed testing which originally took 18 man-months and found 127 bugs. Figure 7 shows a comparison between Directed

testing and Coverage-driven random verification.

Figure 7. Comparison between Directed testing and Coverage-driven random verification

127

165

17.81
21.15

0

10

20

30

40

0

50

100

150

200

Directed testing Coverage-driven random verification

m
an

-m
o
n

th

b
u

g

Number of detected bugs Verification man-month

6

• The number of detected bugs after applying coverage-driven random verification has increased by 38 more bugs,

which is 30% improved compared with directed testing. It proves the efficiency in quality improvement. Moreover,

after reviewing new bugs, we concluded that 50% of them would be hard to detect in directed testing.

• Unfortunately, the verification man-month has increased by 18% compared with directed testing. Since the

coverage-driven random verification covered a larger verification space than directed testing, it is reasonable that

the man-month would increase. In general, it is good that only an 18% man-month increase for 30% quality

improvement.

V. CONCLUSION

In this paper, we have introduced the efficiency of coverage-driven random verification using UVM technologies. It

helps to improve the quality of SystemC IPs and solves the limitation of directed testing:

• The tests can be generated automatically, verification coverage target can be fully reached as defined schedule with

less effort than directed testing.

• Verification quality can be ensured by coverage of IP specifications.

• Verification goals and progress can be ensured by functional coverage.

• Requirement and schedule can be ensured by a verification plan.

There is an increase in verification engineering resources, but it could be further saved by reusing the verification

environment. The coverage-driven random verification using UVM technologies has still a lot of growth potential, we would

like to share a proposal for the future:

• Create guidelines for UVM-based coverage-driven random verification.

• Develop SystemC VIPs to improve implementation efficiency and reusability.

• Utilize UVM-ML, which is UVM for multiple languages such as SystemVerilog and SystemC, to incorporate

verification technologies from other domains (available VIPs from 3rd party vendors).

ACKNOWLEDGMENT

We would like to take this opportunity to express our gratitude to all our colleagues at Renesas Electronics Corporation.

The research on coverage-driven random verification using UVM technologies would not have been successful without their

cooperation and input. Moreover, we would like to give thank our managers for reviewing and supporting us in this activity.

REFERENCES

[1] Juinn-Dar Huang, Ph.D. Assistant Professor, IP Core Design – Lecture 7 Introduction to SystemC,

http://twins.ee.nctu.edu.tw/courses/ip_core_04/handout_pdf/07_Introduction_to_SystemC.pdf, National Chiao Tung University, September 2004.

[2] Martin Barnasconi, François Pêcheux, Thilo Vörtler, Advancing system-level verification using UVM in SystemC, https://dvcon-

proceedings.org/wp-content/uploads/advancing-system-level-verification-using-uvm-in-systemc.pdf, The Design & Verification Conference &

Exhibition United States (DVCon US), 2014.

[3] Doulos, Coverage-Driven Verification Methodology, https://www.doulos.com/knowhow/systemverilog/uvm/easier-uvm/easier-uvm-deeper-

explanations/coverage-driven-verification-methodology/, accessed June 2023.

[4] ChipVerify’s Blog, UVM introduction, https://www.chipverify.com/uvm/uvm-introduction, accessed June 2023.

[5] Finn Haedicke, Hoang M. Le, Daniel Große, Rolf Drechsler, CRAVE: An Advanced Constrained Random Verification Environment for SystemC,

International Symposium on System on Chip (SoC), October 2012.

[6] Dragoș Dospinescu, Teodor Vasilache, Functional Coverage For SystemC (FC4SC), Functional Coverage for

SystemC_FC4SC_SCED_EU_2018.pdf (amiq.com), SystemC Evolution Day, October 2018.

[7] ChipVerify’s Blog, SystemVerilog Covergroup and Coverpoint, https://www.chipverify.com/systemverilog/systemverilog-covergroup-coverpoint,

accessed June 2023.

[8] vlsi4freshers, Basics Of UVM:Testbench Architecture, https://www.vlsi4freshers.com/2020/04/uvm-testbench-architecture.html, accessed June

2023.

[9] Pao-Ann Hsiung, Transaction-Level Modeling in SystemC, https://www.cs.ccu.edu.tw/~pahsiung/courses/soc/notes/SystemC_TLM.pdf, National

Chung Cheng University, March 2005.

http://twins.ee.nctu.edu.tw/courses/ip_core_04/handout_pdf/07_Introduction_to_SystemC.pdf
https://dvcon-proceedings.org/wp-content/uploads/advancing-system-level-verification-using-uvm-in-systemc.pdf
https://dvcon-proceedings.org/wp-content/uploads/advancing-system-level-verification-using-uvm-in-systemc.pdf
https://www.doulos.com/knowhow/systemverilog/uvm/easier-uvm/easier-uvm-deeper-explanations/coverage-driven-verification-methodology/
https://www.doulos.com/knowhow/systemverilog/uvm/easier-uvm/easier-uvm-deeper-explanations/coverage-driven-verification-methodology/
https://www.chipverify.com/uvm/uvm-introduction
https://www.amiq.com/consulting/wp-content/themes/Amiq-Unify/papers/fc4sc_dvconeu2018/Functional%20Coverage%20for%20SystemC_FC4SC_SCED_EU_2018.pdf
https://www.amiq.com/consulting/wp-content/themes/Amiq-Unify/papers/fc4sc_dvconeu2018/Functional%20Coverage%20for%20SystemC_FC4SC_SCED_EU_2018.pdf
https://www.chipverify.com/systemverilog/systemverilog-covergroup-coverpoint
https://www.vlsi4freshers.com/2020/04/uvm-testbench-architecture.html
https://www.cs.ccu.edu.tw/~pahsiung/courses/soc/notes/SystemC_TLM.pdf

