

1

Scalable Mixed Features Stimulus Generation for

Cluster Network Using Sequence Decorator

Chi-Ming Li, Synopsys Inc., Hsinchu City, Taiwan (Chi-Ming.Li@synopsys.com)

Abstract—Verification engineers put in a great effort designing stimulus for bug hunting and coverage closure. In

Constrained random verification (CRV) methodology like UVM, generating versatile stimulus for stressing DUT

usually requires a lot of hand-crafted sequence classes with constraints for addressing specific verification concerns.

As the project goes on, the number of such sequence classes surge which eventually leads to combinatorial explosion.

In this paper we propose a scalable way to design and manage sequence classes using the sequence decorator, which is

a structural design pattern commonly used in Object-oriented programming (OOP). We also demonstrate how the

sequence decorator can be applied to stressing DUT with massive concurrent transitioning state space like an out-of-

order processor cluster network.

Keywords—UVM; Mixed Features Test; Design Pattern

I. INTRODUCTION

Finding corner-case bugs is a major challenge for design verification as many of them are mixed features related

and deep-state dependent, which often require comprehensive constrained randomness to hit. Ideally we want such

mixed features stimulus activating multiple hardware features concurrently, when they might also be required to

drive DUT states into a specific condition that is not obvious when we profile direct cases. Unfortunately,

determining and implementing all possible mixed features stimulus in an efficient and scalable manner is a big

challenge because the number of feature combinations can grow exponentially as the DUT becomes more

complicated. As a result, verification engineers either end up produces over-proliferated stimulus codes that often

overloads available resources, or compromises the stimulus versatility and wish that no bugs left behind. In this

paper, we briefly summarize a commonly used stimulus development flow, followed by illustration of stimulus

scalability issue arises from the flow when verifying a complicated design like an out-of-order capable cluster

network (CLN). And then at the end we proof sequence decorator could solve the scalability issue of mix-features

stimulus generation in a reasonable and affordable manner

II. COMMON STIMULUS DEVELOPMENT FLOW

 The prevailing technique for conducting stimulus generation in UVM is to apply scenario constrains at various

levels of abstraction. One common hierarchy for modeling stimulus is depicted in Figure 1. A transaction is a

primitive operation of a hardware interface. A sequence aggregates multiple transactions to implement a single

scenario for an interface. A virtual sequence controls and coordinates sequences which are dispatched to various

hardware interfaces for modeling a high-level scenario. The test level provides user control knobs for steering or

switching among high-level scenario sequences without knowledge of implementation detail.

2

Figure 1. Common stimulus modeling hierarchy

 For example, in CLN verification, a transaction is usually a memory-mapped read or write with many attributes

like data size, cacheability, transaction ID and so on. We usually constrain legal transaction attributes space at the

transaction-level itself and implement verification engineering’s intents into scenarios by creating constraints at

sequence level. This technique is crucial for verifying complex DUT with massive concurrent transitioning state

space like CLN as many corner cases requires deep-state dependent mixed feature combination to be hit, which

usually needs to be constructed with certain levels of abstraction by engineers for steering constraints at higher

level.

 The constraints inside a scenario sequence can be categorized into two kinds: declarative constraints and

prerequisite constraints. The declarative constraints are described in conventional SV constraint constructs, which

specify parameters and attributes of intent for a scenario sequence. The prerequisite constraints, however, are

setups or preparations steps required before execution of a scenario sequence. An example of scenario-based

sequence implementation can be found in Figure 2. The intent is to create scenarios having multiple concurrent

cacheable transaction sequences, which result in back-to-back collisions on same cache structure index. In the

declarative constraints part, we constrain the cacheability attribute (i.e., axcache) to be cacheable and transaction

addresses to be mapped to same cache index regardless read or write. In the prerequisite constraints part, we enable

the cache feature and set up the related memory maps for CLN whenever necessary. This sequence is highly

reusable and can be randomized on-demand to construct more interesting scenarios by running in parallel or

layering for abstraction with other sequences.

3

Figure 2. cache line conflict stress sequence

III. SEQUENCE SCALABILITY ISSUE

In the early phase of verification, a scenario sequence usually addresses single hardware feature. As the project

goes on, the verification work usually evolves from single feature to mixed features, which demands much more

sequence classes for taking care of mixed features concerns. Such constraints crafted for mixed features are very

likely to duplicate from the ones already scattered around the existing sequences, which leads to tedious coding of

fusing old constraints from various sequence classes into a new sequence class. Such duplication of sequence

constraints is hard to maintain and error-prone. Most significantly, when the number of features grows to a larger

number N, the corresponding mixed features combinations surges to 2N, which is also known as combinational

explosion. Such a scalability issue is shown in Figure 3.

4

Figure 3. Combinational explosion

 For example, a QoS feature used to be verified separately, which is configured by specifying priority of QoS

ID associated with each transaction. Such priority setting affects cache replacement policy when cache conflicts

occur, where the cache line with lower QoS ID priority is evicted. A sequence for verifying the QoS is shown in

Figure 4. To stress DUT further with mixed scenarios, we need to fuse existing scenario-based sequences. Suppose

we want to fuse the cache-conflict sequence with a QoS sequence to verify the mixed features scenario where cache

line conflicts occur frequently when the QoS feature is also enabled. By an intuitive approach, we must create a

new sequence class called “cache-conflict-QoS sequence” which inevitably duplicates both declarative and

prerequisite constraints from the original. It is possible to reduce the duplication to half by extending the cache-

conflict sequence with new constraints from cache-QoS (or the other way around), but this could result in over-

complicated sequences inheritance hierarchy. Such tricky code proliferation due to mixing two features is illustrated

in Figure 4.

Figure 4. Code proliferation when mixing two features.

 Bromley et al. proposed the pairwise-testing pattern [1] to stimulus generation, which reduce the mixed features

combinations effectively using the pairwise heuristic. Nevertheless, the stimulus constraint duplication persists. To

mitigate such code duplication, Dickol et al. proposed the constraint policy method [2], where the principle is to

5

encapsulate sequence constraints into a dedicated policy class, which is latter aggregated by the sequence to

construct mixed constraints. However, this approach only applies to declarative constraints but prerequisite

constraints. In addition, the policy class brings additional implementation overhead of refactoring the existing

sequence code.

IV. SEQUENCE DECORATOR

To address the sequence scalability issue effectively with minimum modification to existing sequences code.

We propose the sequence decorator method, which is inspired by the decorator design pattern introduced by Gang

of Four (GoF) [3]. Figure 5. Illustrates the UML diagram of the sequence decorator class. Instead of re-

implementing constraints explicitly in new sequence code, it aggregates various sequences dynamically with a rand

sequence queue. Each individual sequence binds its declarative constraints to the sequence decorator using

add_mixture() function, which assigns transaction handles of individual sequence to the corresponding transaction

objects of the sequence decorator so that the declarative constraints can later be applied to the transaction objects.

Once multiple sequences are bound to the sequence decorator, randomizing this sequence decorator enables the

constraint solver to put all declarative constraints from the sequence queue together and produce an aggregated

constrained randomization result for transaction objects. On the other hand, the prerequisite constraints are

aggregated and applied by the sequence decorator inside its prerequisite_setup() task, which walks through all the

individual prerequisites_setup() tasks from the sequence queue. This sequence decorator patterns provides several

advantages for mixed features verification. In the example of cache-QoS stimulus, the sequence code can be greatly

simplified, even into a one-liner for each individual feature or scenario with macros. The code snippet is shown in

Figure 6.

Figure 5. Sequence Decorator

6

Figure 6. Simplified code with sequence decorator.

To generate all combinations for n mixed features efficiently, we can further extend the sequence decorator with

n-wise consideration where n individual feature sequences have been added to its sequence queue. We implement

the pre_randomize() hook which maps a serial number k inside [0 .. 2n-1] to a combination of mixed features. We

can consider the binary of k as a representation of features mixture, where m-th set denoting m-th feature is mixed.

The mapping is a bijection so all the combinations can be traversed exhaustively by iterating the number from 0 to

2n-1. The code snippet is shown in Figure 7.

7

Figure 7. All combinations sequence example

V. CONCLUSION

 In this paper, we introduce the sequence scalability issue for mixed features test which is crucial for corner-case

bugs finding. We inspect the prevailing stimulus development flow and how the scalability issue arises with CLN

verification example. We demonstrate the sequence decorator with code example to address this issue. With the

sequence decorator, the verification engineers can develop a specific mixed features stimulus rapidly, as well as

traverse all combinations of mixed features stimulus.

REFERENCES

[1] Jonathan Bromley and Kevin Johnston, “Is Your Testing N-wise or Unwise? Pairwise and N-wise Patterns in SystemVerilog for Efficient

Test Configuration and Stimulus” Design and Verification Conference & Exhibition Europe, 2015.

[2] John Dickol,” I Didn’t Know Constraints Could Do That!”, DVClub Europe, 2018.

[3] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns : Elements of Reusable Object-Oriented Software.

Reading, Mass. :Addison-Wesley, 1995.

