DESIGN AND VQIC:ATIONTM

DV LN

CONFERENCE AND EXHIBITION

PSS action sequence modeling
using Machine Learning

Moonki Jang , Samsung Electronics co., Ltd

)
s A M s “ N G SYSTEMS INIIATIVEQ é’

Agenda

« Background of Motivation

ace//er d) 2022/06/23

* Why is deadlock verification mainly done in the silicon level?

* Due to deadlocks found at the silicon level:
« Causes performance degradation due to SW Workaround
* Huge expense for mask revision

* For these reasons, we’ve been find way to verify deadlock on
the early stage of pre silicon level

* Why is deadlock verification difficult at the pre silicon level?
» A deadlock is caused by a combination of certain conditions
* However, it is difficult to reproduce the conditions and combinations
« Random test is not suitable for pre silicon

* A different deadlock verification methodology is needed that
utilizes the advantages of pre-silicon level only.

At the pre silicon level, internal signals can be monitored.

* This means that the target condition can be created rather than waiting
for it to occur.

* |t is not easy to simultaneously generate different hardware events
from the CPU running through software.

* We will show you how we made it possible in this study.

Agenda

* Introduction of PSS action sequence model

* Even if SW is executed at the same time, the resulting HW
event occurs differently.

SW View HW View Delay Assertion
CPUO CPU1 CPU2 CPUO CPU1 CPU2 CPUO CPU1 CPU2
Func_A Func_B Func_C Func_A delay |

Func_C <delay>
Func_B Func_A Func_B Func_C

* We had to insert delay to make synchronized HW events.

* Problem of traditional SW delay

//Loop delay //NOP instruction
i=100; NOP;
While(i--); NOP;

* We need delay that has linearity and cycle accuracy resolution

* Introduction of Delay counter

TB(Test Bench)

DELAY_COUNTER <«

DUT
(Device Under Test)

task uvm_delay(cpuid, delay);
<wait <delay> clock cycle>
<generate interrupt to
<cpuid>>

endtask

* We can create a linear and high-resolution delay through above
DELAY_ COUNTER.

« PSS test generation
« For action synchronization, PSS delay is added before the target action.
« PSS delay has configurable clock cycle delay

PSS input PSS input
[Delayx]
TB(Test Bench) CPU_A CPU_B
int main () { int main () {
DELAY_COU NTER «—1— pss._delay(;(s; pss'_delay(‘y');
task uvm_delay(cpuid, delay); action_A(); action_B();
<wait <del§y> clock cycle>) } }
<g;;1erEte interrupt to <cpuid>> void pss_delay(delay x) { void pss_delay(delay y) {
endtas send_mailbox (cpuid a, delay x); | send_mailbox (cpuid b, delay y);
wii(); wii();
} }
int action_A() { int action_B() {
start_function_A(); start_function_B();
} }
DUT(Device Under Test)

SYSTEMS INITIATIVE

« Output monitor and output repository

* The output monitor checks whether a preset target condition has
occurred.

* The output repository is a space where the information output by the
output monitor is collected

TB(Test Bench)
OUTPUT MONITOR

task output_monitor;
@(posedge clk)
if(start A== 1||start_B == 1)
<report output data>
endtask

OUTPUT Repository
Output =

L {scenario_name, seed_num, action_name, delay, timestamp},
{scenario_name, seed_num, action_name, delay, timestamp},
{scenario_name, seed_num, action_name, delay, timestamp},

SYSTEMS INITIATIVE

« Complete structure of PSS action sequence model

PSS input PSS input
TB(Test Bench) CPU_A CPU_B
int main () { int main () {
DELAY_COUNTER < " pss_delay(: " pss_delay())
task uvm_delay(cpuid, delay); action_A(); action_B();
<wait <del?y> clock cycle> . } }
<g§:er;te interrupt to <cpuid>> ‘ void pss_delay(delay x) { \\ void pss_delay(delay y) {
endtas send_mailbox (cpuid a, delay x); | send_mailbox (cpuid b, delay y);
OUTPUT MONITOR) whi(); }Wﬁo;
task output_monitor;
@(posedge clk) int action_A() { int action_B() {
if(start_ A== 1 || start_.B == 1) start_function_A(); start_function_B();
<report output data> } }
dtask H
== DUT(Device Under Test)

OUTPUT Repository
Output =

» {scenario_name, seed_num, action_name, delay, timestamp},
{scenario_name, seed_num, action_name, delay, timestamp},
{scenario_name, seed_num, action_name, delay, timestamp},

* We’'ve implement Machine learning algorithm for finding proper
delay value x and y

SYSTEMS INITIATIVE

Agenda

* Machine learning implementation

* ML sequence modeling flow

SYSTEMS INITIATIVE

Setup

Select PSS test scenario
Specify target actions and target output conditions

)

-

Gathering

PSS will generate tests with different delay value
Collect learning data in the output repository

&

Learning

Find regularity between delay and output timestamp
Create a formula between delay and output timestamp

-

Analysis

Find common output timestamp for each target action
If not, re-gathering with higher resolution delay

-

Creation

PSS generates test with delay values determined through
the analysis stage.

» Setup / Gathering stage

* In the Setup stage
» Selects the scenario to be used for test creation
» Selects the target action to control the sequence
« Set the pss_delay value

* In the Gathering stage

» the PSS tool creates tests and performs simulations according to
configured batch mode script

 After running the generated tests, store the output monitor's result
report in the output repository.

 Learning stage
* WWe can create coordinates with delay and timestamp values

* The goal of Learning stage is to obtain the following linear equation by
identifying the tendency between each coordinate

Action A Action B Action A:2X;+1 =Y (X1,X3: delay)«
(0,1) 0,2) Action B:3X;+2=7 (Y : Output timestamp)
(1,3) (1,5)
(2, 5) (2, 8) ax +b=y, a (slope) = increment of timestamp / increment of delay. |

SYSTEMS INITIATIVE

* Analysis stage

« Uses the formula created in the learning stage to find the delay value
where the output condition of the target actions occurs simultaneously

Action A:2X;+1=Y
Action B:3X; +2=7

(X1,X3: delay)-
(Y : Output timestamp)«

timestamp

Action B:3x +2 =y
Action A:2x + 1 =y

SYSTEMS INITIATIVE

* Analysis stage

* We can find the possible combinations of X1 and X2 using the
Extended Euclidean algorithm as follows. (refer to the paper for details)

Action A:2X; +1=7Y (X1,Xy: delay)-

, ; - 2a+1=3b+2.
Action B:3X;+2=7Y (Y : Output timestamp)« (a : delay of Action_A, b: delay of Acion B)«
2a-3b=1I-

!

(Euclidean algorithm)«

3=2%]+ I
2=1%2+ 0.

;Extended .Euclideap algorithm)-
(k,a,b) s (0’_19'1)5 ('152.-.1‘)9 ('29593)5 ('3,&8:5)9 ('4-»1 157),» cent - f=-3*(-1) st

-Particular solution : «

ap = -], bo =_]¢

-General solution : «
a=ap+ k*(-3)/1) = -1 -3k
b=bo—k*2/1) = -1 -2k

SYSTEMS INITIATIVE

Agenda

« CASE STUDY : PCle deadlock condition reproduction

* PCle deadlock case
« PCIE deadlock is caused by protocol conflict between PCIE and ACE bus

Interconnector
CPU
Cluster
Posted Write (WLU)
Memory Write| Snoop
Conditiofrﬁ v \
] | DR Y
i NPW | Snoop Queue
1 NPW
[NPW | Coh
j'— ln(:efcrs:;ector PRC(]:E PCIE EP
| NPW |
' : o MNon-posted Read
_— [T
'\ lon-f ed Write /

Condition_1

SYSTEMS INITIATIVE

« PCIE deadlock appears when the following conditions occur
simultaneously
« Condition_1 : Generate PCIE RC buffer full (generated by Action_1)
« Condition_2 : Generate Writeback transaction (Action_2)
« Condition_3 : Snoop generated from posted write of PCIE (Action_3)

 Target condition of each action that described in target output file

Action_1 top.dut.BLK_HSIO .xxx.pcie_rc_buf_full ==1

top.dut.BLK_CPUCL.xxx. AWVALID && top.dut.BLK_NOCLO.xxx AWREADY &&
top.dut.BLK_CPUCL.xxx. AWSNOOP[2:0]=="0b011’

top.dut.BLK_NOCLO.xxx. ACVALID && top.dut.BLK_CPUCL xxx. ACREADY &&
top.dut.BLK_NOCLO.xxx. ACSNOOP[3:0]=="0b1101"

Action_2

Action_3

SYSTEMS INITIATIVE

« Gathering stage

« Tests have been generated by increasing the pss_delay value one step by
one from 0 to 100 using the PSS tool

* learning data stored in the output repository is as shown in the figure below

//scenario,seed_num,action,delay,timestamp

{pcie_np_wr_pw_ml, 8875, cpu_writeback, 0, 874352},
{pcie_np_wr_pw_ml, 8897, pcie_ep_mem_write, 0, 874354},
{pcie_np_wr_pw_ml, 8964, pcie_config_write_rc_full, 0, 1496546},
{pcie_np_wr_pw_ml, 9324, cpu_writeback, 1, 874354},
{pcie_np_wr_pw_ml, 9357, pcie_ep_mem_write, 1, 874357},
{pcie_np_wr_pw_ml, 6853, pcie_config_write_rc_full, 1, 1496554},
{pcie_np_wr_pw_ml, 9874, cpu_writeback, 2, 874356},
{pcie_np_wr_pw_ml, 10543, pcie_ep_mem_write, 2, 874360},
{pcie_np_wr_pw_ml, 13780, pcie_config_write_rc_full, 2, 1496564},
{pcie_np_wr_pw_ml, 3543, cpu_writeback, 3, 874358},
{pcie_np_wr_pw_ml, 3876, pcie_ep_mem_write, 3, 874363},
{pcie_np_wr_pw_ml, 8423, pcie_config_write_rc_full, 3, 1496572},
{pcie_np_wr_pw_ml, 6980, cpu_writeback, 4, 874360},
{pcie_np_wr_pw_ml, 7005, pcie_ep_mem_write, 4, 874366},
{pcie_np_wr_pw_ml, 12098, pcie_config_write_rc_full, 4, 1496580},

SYSTEMS INITIATIVE

 Learning stage

* The learning data collected in the output repository is organized in the
form of coordinates for each action as follows for linear regression

analysis
Action le Action 2« Action 3¢
(0, 1496546)- (0, 874352)« (0, 874354)-
(1, 1496554)- (1, 876154) (1, 874357)e
(2, 1496564)- (2, 874356)- (2, 874360)-
(3, 1496572)- (3, 874358)« (3, 874363)-
y=8X11+1496546+ y=2X,+874352¢ y=3x31+874354¢

SYSTEMS INITIATIVE

* Analysis stage
» Using the Extended Euclidean algorithm as shown below

- Linear equation of Action 2 : y=2x,+874352.
- Linear equation of Action 3 : y=3x3+874354.
- Particular solution : X> =4, X3=2 «
- General solution (k : integer value)-

X2 =4- 3k

Xz =2 -2k

]

* If k has a value of -103699:+
Xo =4 —-3%-103699)= 311101+

X3 = 2 —2%(-103699)= 207400.

Action 2: y=2x311101 + 874352 = 1496554«
Action_3: y=3x207400 + 874354 = 1496554«

* pss_delay,cion 1= 1, pss_delaygtion 2= 311101, and pss_delay,tion 3=
207400

SYSTEMS INITIATIVE

Agenda

* Conclusion

Conclusion
* Through this study:

* We were able to discover new possibilities of PSS through Machine
Learning

« WWe enable deadlock verification that was considered impossible at the
simulation level.

* |t should be possible to predict the risk expected condition through the risk
assessment process.

SYSTEMS INITIATIVE

* Question and Answer
» Please feel free to contact me (moonki.jang@gmail.com)

