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Abstract- In general, one of the most difficult aspects of ML is collecting data for learning. This is because the more 

learning data, the higher the prediction accuracy of ML. In this regard, we expected that the combination of PSS, which 

can easily generate numerous tests, and ML, which finds regularity based on collected data, could exert fantastic synergy. 

And we were able to dramatically increase the verification coverage by being able to freely create concurrent function 

events that were previously considered impossible at the simulation level through PSS and ML 

 

I.   INTRODUCTION 

We have an experience in deadlock verification caused by a protocol conflict between PCIe and ACE interface at 

the pre-silicon level using actual PSS. [1][2] In order to generate deadlock, it was necessary to satisfy a very 

complex sequence condition in which write transactions of CPU and snoop transactions due to posted writes of PCIe 

must occur correctly in sequence while the PCIe RC buffer is overflowed. We were able to reproduce the deadlock 

condition after classifying each deadlock target condition by PSS action and generating scenarios with thousands of 

random sequence combinations.  

However, even in this process, it was necessary for the engineer to continuously check and analyze the results to 

adjust the random constraints in order to reproduce the target condition, and a considerable amount of time and 

manpower were required. This is because, as shown in the figure below, we thought that we performed 3 functions 

with SW at the same time, but on the actual HW, the function was being performed at different times. At that time, 

we had no choice but to add configurable delay and compare results to ensure that each function was executed at the 

same time at the actual hw level. 

 
Figure 1. Software sequence vs actual hardware sequence 

 

The starting point of this paper was the imagination that AI (Artificial Intelligence) could repeat itself and create 

an action that satisfies the target condition if only the target condition was specified for each PSS action without the 

need for an engineer to intervene to analyze and adjust the result 

In this paper, we will explain how to apply ML (Machine Learning) to PSS with specific examples. 

 

II.   TB STRUCTURE OF PSS ACTION SEQUENCE MODEL 

In general, fatal deadlock issues mainly found at the silicon-level occur in situations where certain conditions 

occur at the same time as above. And until now, the reproduction of the deadlock condition has tended to rely 

mainly on random tests, so an environment that can be tested for a long time at high speed was necessary, and it was 

thought that it was not suitable for verification at the simulation level. However, the simulation environment has the 
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advantage of being able to monitor internal RTL signals that cannot be seen at the silicon level and perform 

hundreds of tests simultaneously in parallel. To utilize these advantages, we created a PSS action sequence model 

using configurable delay and signal monitor to enable precise action sequence control. 

The figure below shows the structure of the PSS sequence model. 

 
Figure 2. Structure of PSS action sequence model 

A. PSS scenario generation  

The above figure shows how the C code generated through the PSS tool operates in CPU_A and CPU_B, 

respectively. The delay value, which is a configurable PSS input value, is added in front of the target action as a 

function called pss_delay. When generating a test in the PSS tool, this pss input value can have a specific value or a 

random value. You can also set the number of generated tests. 

 

B. Cycle delay counter  

For sophisticated action sequence control with cycle accuracy, we made and used a cycle delay counter that can 

adjust the delay in units of clock cycles in the TB. When pss_delay is executed in C code, the delay value and cpu id 

are stored in a specific memory area used as a mailbox. In the monitoring task of TB, the mailbox is checked every 

cycle. When a value is transmitted from pss_delay, the cycle delay counter starts to operate. The cycle delay counter 

counts the clock cycle as much as the delay value and generates an interrupt to the CPU to notify the end of the 

delay. 

The important point here is that the mailbox is checked every cycle and an interrupt is generated at the end of the 

delay to eliminate the unpredictable cycle loss to create an action delay as much as the desired clock cycle. 

 

C. Output monitor  

When executing tests generated by PSS tool in simulation environment, include target output file describing target 

condition as command argument. As for the target condition described in the target output file, it is checked whether 

the target condition occurs every clock cycle in the output monitor of the TB as shown in the figure above. If the 

target condition occurs, the output monitor prints the test information, timestamp information, and action 

information that caused the target condition as a simulation log message. After the simulation is completed, the log 

analyzer extracts the output monitor message from each simulation log and stores it in the output repository. 

  

D. Output repository  

The output repository is a space where the information output by the output monitor is collected. The information 

collected here is used as training data for ML flow, which will be described below.  



 

 

III.   ML IMPLEMENTATION FOR PSS ACTION SEQUENCE MODELING 

The purpose of the PSS action sequence model is to adjust the delay to equalize the output timestamp values of 

different actions. And for this, we applied the ML technique to the sequence modeling process. 

The figure below shows the ML sequence modeling flow. 

 

 
Figure 3. ML sequence modeling flow 

 

A. Setup/Gathering stage  

In the setup stage, the PSS tool selects the scenario to be used for test creation and selects the target action to 

control the sequence. And set the pss_delay value to be applied to the test to be created. The settings related to these 

test generation are reflected when generating the test through the batch mode script supported by the PSS tool.  

And the target condition to be used in the output monitor is also selected here. Target condition is managed as a 

separate file, and when simulation is executed, it is transmitted to testbench through cmd argument and applied to 

simulation.  

In the Gathering stage, the PSS tool creates tests and performs simulations according to configured batch mode 

script. After running the generated tests, store the output monitor's result report in the output repository.  

 

B. Learning stage  

ML engine analyzes the results stored in the Output repository to determine how the delay increase affected the 

output condition occurrence time and to find the regularity between the two. This process is implemented as a 

simple ML linear regression algorithm. From the data collected by the output monitor, we can create coordinates 

with delay and timestamp values.  

The table below shows the delay values of Action A and Action B and the timestamp where the actual target 

condition occurred in the form of coordinates.  
TABLE I 

EXAMPLE OF GENERATED COORDINATES  

Action A Action B 

(0, 1) (0, 2) 

(1, 3) (1, 5) 

(2, 5) (2, 8) 

 

In the learning stage, the goal is to obtain the following linear equation by identifying the tendency between each 

coordinate. 

ax + b = y,                a (slope) = increment of timestamp / increment of delay 

Figure 4. Linear equation 

 



Accordingly, the linear equation representing the correlation between delay and timestamp for Action_A and 

Action_B is obtained as follows. 

 

 

 

 

Figure 5. Learning result 

 

In the process of linear regression analysis, you can simply obtain a linear equation from the learning data using a 

python library called SciPy[3] as shown below. 

 

 

 

 

 

 

 

Figure 6. linregress API of SciPy 

C. Analysis stage  

In the analysis stage, the stage agent uses the formula created in the learning stage to find the delay value where 

the output condition of the target actions occurs simultaneously. The equation in figure 5 obtained in the learning 

stage is transformed as follows. 

 

 

 

 

Figure 7. Equation for finding common timestamp value 

This equation is substituted with a Linear Diophantine equation[4] of the form ax+by=c, and the greatest common 

divisor and solution of the equation are found using the Extended Euclidean algorithm[5] as shown below. However, 

if c is not a multiple of the greatest common divisor of a and b, this equation cannot be solved according to Bézout's 

Identity [6].  

 
Figure 8. Extended Euclidean algorithm for Diophantine equation 

Action_A : 2X1 + 1 = Y              (X1,X2: delay) 

Action_B : 3X2 + 2 = Y              (Y : Output timestamp) 

from scipy import stats  

   x = [x1, x2, x3, x4, x5, x6, x7,…]  

   y = [y1, y2, y3, y4, y5, y6, y7,…]  

  slope, intercept, r_value, p_value, std_err = stats.linregress(x, y) 

2a + 1 = 3b + 2 

 (a : delay of Action_A, b: delay of Acion_B ) 



The Extended Euclidean algorithm finds the greatest common divisors of a and b, as well as x and y values that 

satisfy the equation. The solution obtained in this way is called a particular solution, and using this, a general 

solution can be obtained that can find numerous combinations of x and y depending on the integer k value. 

 

 

 

 

 

 

 

 

Figure 9. Result of Extended Euclidean algorithm 

 

The formula in figure7 can be expressed as 2a-3b=1 as shown below. Using the Extended Euclidean algorithm, a 

particular solution of a0=-1, b0=-1 can be obtained, and a general solution can be obtained using these values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Result of analysis stage 

 

By changing the k value of this general solution, we can obtain numerous combinations of a and b values that 

satisfy 2a – 3b = 1. That is, it is possible to find the pss_delay value that causes Action_A and Action_B to have the 

same timestamp value using the Extended Euclidean algorithm. 

 

 

 

Figure 11. Result of generation solution 

 

The code implementing the Extended Euclidean algorithm using Python is as follows. Input the values of a, b, and 

c of ax+by=c and output a particular solution.  

 

 

 

 

 

 

 

 

 

 

 

- Particular solution (d : GCD of a and b) 

X0 = s x c/d 

Y0 = t x c/d 

- General solution (k : integer value) 

x = x0 + k * b/d 

y = y0 - k * a/d 

2a - 3b =1 

 

(Euclidean algorithm) 

3 = 2*1 + 1 

2 = 1*2 + 0 

 

(Extended Euclidean algorithm) 

1 = -3*(-1) + 2*(-1) 

 

-Particular solution :  

a0 = -1, b0 = -1 

 

-General solution :  

a = a0 + k*((-3)/1) = -1 -3k 

b = b0 – k*(2/1) = -1 – 2k 

(k,a,b) = (0,-1,-1), (-1,2,1), (-2,5,3), (-3,8,5), (-4,11,7), … 



def diophantine(a, b, c): 

 '''returns (x, y) where ax+by=c''' 

 r1, r2 = a, b 

 s1, s2 = 1, 0 

 t1, t2 = 0, 1 

  

 while r2!=0: 

  q = r1/r2 

  r1, r2 = r2, r1%r2 

  s1, s2 = s2, s1-q*s2 

  t1, t2 = t2, t1-q*t2 

 # gcd: r1 

 return (c/r1*s1, c/r1*t1) 

Figure 12. Extended Euclidean algorithm code 

 

If the expected delay values are obtained through the above processes, repeat the learning data gathering and 

learning stage based on the values to check whether the previously obtained linear equation is the same and applied, 

and check whether the same timestamp is obtained as predicted. In the case of the ML linear regression algorithm, 

since it is important to maintain the linearity of the learning data, a system Verilog-based cycle delay counter is used 

without any SW loop delay that can hinder this. And even when the delay is completed, it is implemented to notify 

the completion of the delay with an interrupt that consumes a certain cycle.  

 

D. Creation stage  

In the creation stage, the PSS tool will generate a test using the delay prediction results whose linearity has been 

verified in the analysis stage. In the test generated in the creation stage, the target conditions will be triggered 

simultaneously by the machine-learned delay value. 

 

IV.   CASE STUDY: REPRODUCE PCIE DEADLOCK CONDITIONS 

As mentioned earlier, we have experience in PCIE deadlock verification using PSS. In this chapter, we will show 

how easy it is to reproduce PCIE deadlock conditions using the ML sequence model.  

PCIE deadlock is caused by protocol conflict between PCIE and ACE bus interconnector. As shown in the figure 

below, when the PCIE RC buffer becomes full due to numerous non-posted requests from the CPU, a new non-

posted request cannot be received until the previously posted write is completed. And if the CPU continues to issue 

non-posted requests to PCIe while the PCIE RC buffer is full, the write channel of the bus will be saturated and no 

more write transactions can be processed. And the posted write transaction delivered as WriteUnique type from 

PCIE will not be processed until the write transaction generated by the CPU is completed due to the non-blocking 

requirements defined in the ACE protocol.[7] Eventually, the CPU waits for the PCIE RC buffer to be empty, and 

PCIE waits for the CPU's Writeback transaction to be completed. We call this a deadlock chain 

 



 
Figure 13. PCIE deadlock flow diagram 

 

PCIE deadlock appears when the following conditions occur simultaneously as shown in the figure above.  

1) Condition_1: Generate PCIE RC buffer full (generated by Action_1)  

2) Condition_2: Generate Writeback transaction (Action_2)  

3) Condition_3: Snoop generated from posted write of PCIE (Action_3)  

We reused the above action as it is, and added the pss_delay action in front of the above action for ML sequence 

modeling in the test scenario. 

 

A. PCIE deadlock reproduce: Setup/Gathering stage  

We set the target condition of each action as follows to detect the target condition in the output monitor. 

 
Figure 14. Configured output target conditions 

 



And we generated the test by increasing the pss_delay value one step by one from 0 to 100 using the PSS tool. 

After the execution of the generated test is finished, the learning data stored in the output repository is as shown in 

the figure below.  

 
Figure 15. Learning data in the output repository 

 

B. PCIE deadlock reproduce: Learning stage  

The learning data collected in the output repository is organized in the form of coordinates for each action as 

follows for linear regression analysis. The bottom of the table shows the linear equation of each action obtained by 

the linear regression algorithm.  
TABLE II 

COLLECTED LEARNING DATA  

Action 1 Action 2 Action 3 

(0, 1496546) (0, 874352) (0, 874354) 

(1, 1496554) (1, 876154) (1, 874357) 

(2, 1496564) (2, 874356) (2, 874360) 

(3, 1496572) (3, 874358) (3, 874363) 

… … … 

y=8x1+1496546 y=2x2+874352 y=3x3+874354 

 

C. PCIE deadlock reproduce: Analysis stage  

In order to reproduce PCIe deadlock, the above Aciton-1, Action_2, and Action_3 must occur simultaneously. In 

order to find a solution that allows the linear equations with three different variables to have the same result, we first 

found a general solution for the equations of Action_2 and Action_3 using the Extended Euclidean algorithm as 

shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Result of extended Euclidean algorithm for action_2 and action_3 

- Linear equation of Action_2 : y=2x2+874352 

- Linear equation of Action_3 : y=3x3+874354 

- Particular solution : X2 = 4, X3 = 2  

- General solution (k : integer value) 

X2 = 4 - 3k 

X3 = 2 - 2k 

 

* If k has a value of -103699: 

X2 = 4 – 3*(-103699)= 311101 

X3 = 2 – 2*(-103699)= 207400 

Action_2: y=2x311101 + 874352 = 1496554 

Action_3: y=3x207400 + 874354 = 1496554 



Using this, we searched whether the common timestamp value of Action_2 and Action_3 is in the timestamp 

measurement value of Action_1. We confirmed that when k has a value of -103699, Action_1, Action_2, and 

Action_3 have the same output timestamp value of 1496554 as above. Through this process, we could predict that 

three actions occur simultaneously when pss_delayaction_1= 1, pss_delayaction_2= 311101, and pss_delayaction_3= 207400.  

In this process, we obtained a general solution from Action_2 and Action_3, and used the method to find the 

value obtained therefrom among the timestamp values collected for Action_1. However, it is revealed that it is more 

efficient to modify the Extended Euclidean algorithm to find a general solution for three variables of ax_by_cz=y.  

And, as indicated in red of action_1 above, additional delay may occur due to external factors. The most 

important prerequisite for the sequence model we designed is that it should obtain linear data. For this, factors that 

can influence from the outside should be removed as much as possible. If non-linear data is included as above, the 

intercept of the linear equation is changed and it affects the subsequent results. In this case, the linearity of the result 

range of the analysis stage should be verified again, and then the final result should be passed on to the creation 

stage. 

 

IV.   CONCLUSION 

In general, one of the most difficult aspects of ML is collecting data for learning. This is because the more 

learning data, the higher the prediction accuracy of ML. In this regard, we expected that the combination of PSS, 

which can easily generate numerous tests, and ML, which finds regularity based on collected data, could exert 

fantastic synergy. And we were able to dramatically increase the verification coverage by being able to freely create 

concurrent function events that were previously considered impossible at the simulation level through PSS and ML. 
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