
[Public]

PSS Comes of Age: Runtime Behavioral Coverage,
Methodology and More

Hillel Miller

[Public]

Agenda
• What is PSS Runtime Behavioral

Coverage?

• Runtime Behavioral Coverage flow

• Behavioral Coverage activity operators

• Covergroups in behavioral coverage

• Runtime Reactive Example

• Summary

2

[Public]

PSS Runtime Behavioral Coverage – What is it?
• In PSS 2.0 we introduced Data Coverage:

• Used to report data coverage
• Like System Verilog cover-groups
• Primary Application is at solve time

• In PSS 3.0 we introduced runtime behavioral coverage:
• Used to report coverage of behaviors of actions
• Primary application is for runtime coverage with behavior and data
• Evaluated over a runtime trace of events
• LRM formally specifies the expected coverage results given a coverage PSS model and a trace of

events.
• Usage of PSS Monitors to model activities required to observe to meet coverage goals
• PSS Actions used to model activities for generating action traversal behaviors
• PSS Monitors used to model activities for detecting action traversal behaviors
• PSS Monitors have the look and feel of PSS Action . Making the adoption easier.

3

[Public]

Goals of this presentation

• Assuming you have a good PSS knowledge

• Understand the flow and motivation for using behavioral runtime
coverage

• Provide enough tools to make you LRM behavioral runtime coverage
literate

• Challenge you on whether behavioral runtime coverage is something
to be used on your next project

4

[Public]

PSS Runtime Behavioral Coverage – Example
monitor m1 { write w; read r; activity { w; r; } }
c1: cover m1;

First attempt, with checkpoint t1,

has 2 realizations, that match at t7 and t12

Second attempt, with checkpoint t6,

has 1 realization, that matches at t12

[Public]

PSS Runtime Behavioral Coverage – Example

6

action read {}
action write {}
action idle {}
action send {}
action receive {}

monitor m1 { write w; read r; activity { w; r; } }
monitor m2 { activity { do write; select { do read; do send; }; do receive; } }
monitor m3 { activity { select { do write; do read; }; select { do send; do receive; }; } }

c1: cover m1;
c2: cover m3;

[Public]

Runtime Behavioral Coverage Simulation Flow Example

7

PSS Model for test generation
and behavioral coverage

PSS Developer

PSS Tool Test and
Coverage Model

Generation

Generated test case
(C++, SV, Embedded
Executable Image)

Generated coverage
Model

Design and Testbench Model

Testbench Developer

Simulation Tool
Compile

Simulation Executable

Simulation Tool
Run

Coverage Event
Trace Data

PSS Tool Coverage
Analysis

Coverage Report

Info-[0ns] msg_id(7) design_c::drive_a #14 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[5ns] msg_id(8) design_c::drive_a #14 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[5ns] msg_id(9) design_c::sample_a #18 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(10) design_c::sample_a #18 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[9ns] msg_id(11) design_c::low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(12) design_c::low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[9ns] msg_id(13) design_c::high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[13ns] msg_id(6) design_c::high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - "High path succeeded"
Info-[13ns] msg_id(14) design_c::high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[13ns] msg_id(15) design_c::check_end_a #27 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[17ns] msg_id(16) design_c::check_end_a #27 [pss_top.cpu_core[0]] [cpu[4]] - End

[Public]

PSS Runtime Behavioral Coverage – Motivation and Benefits

• Model monitors to detect behavioral patterns of action traversals

• Enables tools to report coverage of desired behavioral patterns

• Enables sampling behavioral patterns together with data combinations

• Desired overlapping behaviors can only be confirmed at runtime

• Portable across simulation, emulation, silicon, field … All that’s needed is a trace for the required types

• Enables post processing flow, to sample coverage

• Enables sampling data updated at test runtime

• Modular modeling using monitors hierarchically, just like actions

• Usage of constraints to refine pattern detection based on data

• Usage of action like syntax to minimize learning new language (Actions are used for behavior generation.
Monitors are used for behavior observation and detection.)

• Provides analysis information for incomplete runs

8

[Public]

Monitor “sequence” activity operator

9

monitor m1 {
 activity {
 sequence {
 do write;
 do read;
 }
 }
}

[Public]

Monitor “concat” activity operator

10

The concatenation scenario defines an immediate consecutive
matching of its sub-scenarios; the checkpoint of the next sub-
scenario is the matching point of the previous one.

c1: cover { activity { concat { do write; do read; } } }
c2: cover { activity { sequence { do write; do read; } } }

[Public]

Monitor inline constraints

11

c5: cover { activity { concat { do start; do write with core == 0; do read; } } }
c6: cover { activity { sequence { do start; do write with core == 0; do read; } } }

▪ The top-level scenarios of c5 and c6 have the same realization
for each trace: {start, write1, read} for the trace in Figure 31 and
{start, write2, read} for the trace in Figure 32.

▪ The inline constraint in the concat scenario in cover statement
c5 will match the first traversal of write that satisfies the
constraint. In Figure 32, starting at t2, the match point of the
start traversal, the subscenario “do write with core == 0” has the
realization {write2}.

[Public]

Monitor “schedule” operator
• The scheduling scenario defines execution of its sub-scenarios in any order, if

scenario realizations of the member scenarios are not shared.
• There may be any overlaps or gaps between its member scenario spans.
• In the scheduling scenario, the sub-scenarios are matched from the checkpoint of

the scheduling scenario or after it.
• The checkpoints of individual sub-scenarios are independent of each other.
• The realizations of scenario schedule { s1,…,sn } consist of member-wise

realization unions of sub-scenarios s1,..., and sn, provided that these realizations
of different scenarios are pairwise disjoint.

• For example, if set {a,b} is a realization of s1, set {c} is a realization of s2 and set
{d,e,f} is a realization of s3, then set {a,b,c,d,e,f} is a realization of schedule {
s1,s2,s3 }; here, a, b, c, d, e, and f are action executions

12

[Public]

Monitor “schedule” operator

13

action read {}
action write {}
action send {}
action receive {}
monitor m1 { activity { schedule { sequence { do read; do write; }; sequence { do write; do send; } } }
monitor m2 { activity { schedule { sequence { do write; do send; }; sequence { do send; do receive; } } }

▪ The first sub-scenario of the monitor m1 is sequence { do read; do write; }. It has two
realizations: {read, write1} and {read, write2}.

▪ The second sub-scenario Is sequence { do write; do send; }, which also has two realizations:
{write1, send} and {write2, send}.

▪ The realization of the top scenario is obtained either as a union of the first realization of the
first sub-scenario and the second realization of the second sub-scenario or as a union of the
second realization of the first sub-scenario and the first realization of the second sub-
scenario.

▪ Both cases result in the same realization {read, write1, write2, send}.

▪ Other combinations of sub-scenario realizations cannot be united because they have a
common element, either the first or the second write.

▪ The scenario of the monitor m2 has no match.

▪ Its first sub-scenario sequence { do write; do send; } has one realization: {write1, send}.

▪ Its second sub-scenario sequence { do send; do receive; } also has one realization: {send,
receive}.

▪ Since both realizations intersect, the top-level scenario does not have any match.

[Public]

Monitor overlap operator

14

action read {}
action write {}
monitor m { activity { overlap { do read; do write; } } }

▪ The overlapping scenario defines overlapping of its member sub-
scenarios.

▪ The overlapping scenario meets the same conditions as the scheduling
scenario and an additional condition.

▪ The additional condition is that there is a time instant where all its
member scenarios are simultaneously active,

[Public]

Monitor select operator
action read {}
action write {}
action idle {}
action send {}
action receive {}
c1: cover {
 activity {
 do write;
 select { do read; do send; };
 do receive;
 }
}
c2: cover {
 activity {
 select { do write; do read; };
 select { do send; do receive; };
 }
}

15

▪ Cover statement c1 has a successful attempt starting at t1 with two
realizations: {write, read, receive} and {write, send, receive}.

▪ Cover statement c2 has two successful attempts, one starting at time t1
with two realizations {write, send} and {write, receive}, and the other has
starting at time t3 with the realization {read, receive}.

[Public]

Hierarchical Monitors for composing coverage Models

16

action idle {}
action read {}
action write {}
monitor rw { activity { do read; do write; } }
monitor irw { idle i; read r; write w; activity { i; r; w; } }
monitor irw1 { idle i; activity { i; do rw; } }
monitor irw2 { idle i; rw m; activity { i; m; } }
c1: cover irw;
c2: cover irw1
c3: cover irw2

▪ Cover statement c1, c2 and c3 are equivalent.

▪ Monitors irw, irw1, and irw2 are equivalent.

▪ Consider the monitor matching in the trace for the
checkpoint t0.

▪ The monitor irw specifies a sequential scenario and
its only realization is {idle, read, write}.

▪ Monitor irw1 defines a sequential scenario whose
sub-scenarios are the traversal of action i with the
realization {idle} and the traversal of an anonymous
monitor of type rw.

▪ The monitor type rw, in its turn, defines a sequential
scenario, and its checkpoint is t1 or later so that the
realization of monitor irw1 is {idle, read, write}.

▪ The monitor irw2 differs from the monitor irw1 only
in that it traverses the monitor of type rw using its
handle m, and of course, has the same realization
{idle, read, write}.

[Public]

Cover Reports

17

Coverage Property Attempts Matches

Pss_top.cpu_core[0]. drive_followed_by_check_end 2 2

[Public]

Covergroups in Monitors

18

enum locked_e { LOCKED, UNLOCKED };
enum write_mode_e { WRITE_BACK, WRITE_THRU };
action read { rand locked_e lock_mode; }
action write { rand write_mode_e write_mode; }
c: cover {
 write w;
 read r;
 activity { w; r; }
 covergroup {
 cpw: coverpoint w.write_mode;
 cpr: coverpoint r.lock_mode;
 wXr: cross cpw, cpr;
 } cg;
}

▪ Covergroups may be defined and instantiated in monitors and
cover statements to collect data coverage along the scenario
defined by the monitor.

▪ A monitor covergroup is sampled at the first match of the
attempts of a cover statement where the monitor is traversed
(directly or not).

▪ The sampling is done according to the action handle mapping
associated with a first match scenario realization.

▪ If there are several first match scenario realizations, any
realization may be selected for sampling by the
implementation.

[Public]

Verification flow example
• Example shows how the addition of Runtime Behavioral Coverage has

bought PSS closer to satisfy all needs of a verification engineer to
achieve his verification requirements.

• Example is chosen to be reactive to show how a PSS model can deal
with behaviors occurring at Runtime

• The parts that are shown
• Stimulus generation
• Import functions to collect runtime behavior from Testbench interface
• Checkers to check state machine behavior
• Runtime Behavioral coverage to make sure specific paths were covered in

state machine

[Public] Reactive Runtime Example Design

20

typedef enum bit[2:0] {IDLE=3'b000, LOW_PATH=3'b001, HIGH_PATH=3'b010, LOW_PATH_NEXT=3'b101,
HIGH_PATH_NEXT=3'b110} state_e;
module xdesign (
 input resetn,
 input clk,
 input [7:0] inp,
 input goto_next_state,
 output reg [7:0] out,
 output state_e state
);
 reg prev_goto_next_state;
 wire is_next_state_transition;
 assign is_next_state_transition = !prev_goto_next_state && goto_next_state;
 always @(posedge clk)
 if (!resetn) begin
 state <= IDLE;
 out <= 0;
 prev_goto_next_state <= 0;
 end
 else begin
 prev_goto_next_state <= goto_next_state;
 case (state)
 IDLE : begin
 if (is_next_state_transition) begin
 if (inp < 8'h80) begin
 state <= LOW_PATH;
 out <= inp + 1;
 end else
 begin
 state <= HIGH_PATH;
 out <= inp - 1;
 end
 end
 end // case: begin...
 LOW_PATH :
 if (is_next_state_transition)
 state <= LOW_PATH_NEXT;
 HIGH_PATH :
 if (is_next_state_transition)
 state <= HIGH_PATH_NEXT;
 LOW_PATH_NEXT :
 if (is_next_state_transition)
 state <= IDLE;
 HIGH_PATH_NEXT :
 if (is_next_state_transition)
 state <= IDLE;
 endcase // case (state)
 end // else: !if(!resetn)
endmodule // design

IDLE

LOW_PATH

LOW_PATH_NEXT

HIGH_PATH

HIGH_PATH_NEXT

INP?/OUT

INP?/OUT

[Public] Reactive Runtime Example Testbench

21

interface xdesign_if (
 input resetn,
 input clk,
 output reg [7:0] design_inp,
 output reg goto_next_state,
 input [7:0] design_out,
 input [2:0] design_state
);

 task automatic sample_out_imp(output [7:0] out);
 out = design_out;
 endtask // sample_out_imp

 task automatic sample_state_imp(output [2:0] state);
 state = design_state;
 endtask // sample_out_imp

 task transition_state_imp();
 goto_next_state <= 0;
 @(posedge clk);
 goto_next_state <= 1;
 @(posedge clk);
 endtask // transition_state_imp

 task drive_imp(input [7:0] inp);
 design_inp <= inp;
 @(posedge clk);
 transition_state_imp();

 endtask // drive_imp

endinterface // design_if

module top;
 reg clk;
 reg resetn;

 initial begin
 $fsdbDumpfile("top");
 $fsdbDumpvars(0, top);
 resetn <= 0;
 repeat(1) @(posedge clk);
 resetn <= 1;

 end
 initial clk = 0;
 always #1 clk = ~clk;

 wire [7:0] inp;
 wire goto_next_state;
 wire [7:0] out;
 wire [2:0] state;

 xdesign xd(
 .clk(clk),
 .resetn(resetn),
 .inp(inp),
 .goto_next_state(goto_next_state),
 .out(out),
 .state(state)
);

 xdesign_if xdif(
 .clk(clk),
 .resetn(resetn),
 .design_inp(inp),
 .goto_next_state(goto_next_state),
 .design_out(out),
 .design_state(state)
);
 initial begin
 pss__shared__pkg::_if = top.xdif;
 pss__pkg::pss_run_solution();
 $finish;
 end
endmodule // top

top

xdesign_if

xdesign

generated
stimulus

[Public] Reactive Runtime Example PSS Generation Model

22

action check_low_path_a : base_a {
 input design_b design_in;
 exec body {
 state_e xstate;
 if (design_in.is_low_path) {
 xstate = comp.sample_state();
 comp.transition_state();
 if (xstate != LOW_PATH_NEXT)
 message(LOW, "Low path failed");
 else
 message(LOW, "Low path succeeded");
 }
 }
 }

 action check_high_path_a : base_a {
 input design_b design_in;
 exec body {
 state_e xstate;
 if (design_in.is_high_path) {
 xstate = comp.sample_state();
 comp.transition_state();
 if (xstate != HIGH_PATH_NEXT)
 message(LOW, "High path failed");
 else
 message(LOW, "High path succeeded");
 }
 }
 }

action test_state_machine_a {
 activity {
 select {
 do drive_inp_a with {inp == 0x10;};
 do drive_inp_a with {inp == 0x90;};
 }
 do sample_path_taken_a;
 parallel {
 do check_low_path_a;
 do check_high_path_a;
 }
 do drive_final_a;
 }
 }

action drive_inp_a : base_a {
 rand bit[8] in [0x10, 0x90] inp;
 exec body {
 comp.drive(inp);
 }
 } action drive_final_a : base_a {

 exec body {
 comp.transition_state();
 }
 }

action sample_path_taken_a : base_a {
 output design_b design_out;
 exec body {
 state_e xstate;
 bit [8] out;
 xstate = comp.sample_state();
 out = comp.sample_out();
 if (xstate == LOW_PATH) {
 design_out.is_low_path = true;
 design_out.is_high_path = false;
 } else if (xstate == HIGH_PATH){
 design_out.is_low_path = false;
 design_out.is_high_path = true;
 }
 comp.transition_state();
 }
 }

1

2

3

4
IDLE

LOW_PATH

LOW_PATH_NEXT

HIGH_PATH

HIGH_PATH_NEXT

INP?/OUT

INP?/OUT

[Public]

Reactive Runtime Example – Generated Test Cases

23

drive_inp_a (inp=0x10)

sample_path_taken_a

check_low_path_taken_a

design_b

check_high_path_taken_a

drive_final_a

drive_inp_a (inp=0x90)

sample_path_taken_a

check_low_path_taken_a

design_b

check_high_path_taken_a

drive_final_a

[Public] Reactive Runtime Example PSS Coverage Model

24

 drive_followed_by_check_end: cover {
 drive_inp_a dr;
 activity {
 dr;
 do drive_final_a;
 }
 covergroup {
 drive_value: coverpoint dr.inp {
 bins a[] = [0x10, 0x90];
 };
 } cg;
 }
 }

Info-[0ns] msg_id(7) design_c::drive_inp_a #14 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[5ns] msg_id(8) design_c::drive_inp_a #14 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[5ns] msg_id(9) design_c::monitor_path_taken_a #18 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(10) design_c::monitor_path_taken_a #18 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[9ns] msg_id(11) design_c::drive_low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(13) design_c::drive_high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(14) design_c::drive_high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[13ns] msg_id(4) design_c::drive_low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - "Low path succeeded"
Info-[13ns] msg_id(12) design_c::drive_low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[13ns] msg_id(15) design_c::drive_final_a #27 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[17ns] msg_id(16) design_c::drive_final_a #27 [pss_top.cpu_core[0]] [cpu[4]] - End

Info-[0ns] msg_id(7) design_c::drive_inp_a #16 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[5ns] msg_id(8) design_c::drive_inp_a #16 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[5ns] msg_id(9) design_c::monitor_path_taken_a #18 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(10) design_c::monitor_path_taken_a #18 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[9ns] msg_id(11) design_c::drive_low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[9ns] msg_id(12) design_c::drive_low_path_a #21 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[9ns] msg_id(13) design_c::drive_high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[13ns] msg_id(6) design_c::drive_high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - "High path succeeded"
Info-[13ns] msg_id(14) design_c::drive_high_path_a #24 [pss_top.cpu_core[0]] [cpu[4]] - End
Info-[13ns] msg_id(15) design_c::drive_final_a #27 [pss_top.cpu_core[0]] [cpu[4]] - Start
Info-[17ns] msg_id(16) design_c::drive_final_a #27 [pss_top.cpu_core[0]] [cpu[4]] - End

IDLE

LOW_PATH

LOW_PATH_NEXT

HIGH_PATH

HIGH_PATH_NEXT

INP?/OUT

INP?/OUT

[Public]

Reactive Runtime Example Coverage Report

25

Coverage Property Attempts Matches

Pss_top.cpu_core[0]. drive_followed_by_check_end 2 2

[Public]

Summary

26

• Provided understanding of the flow and motivation for using behavioral
runtime coverage, motivations included:

• Provided enough tools to make you LRM behavioral runtime coverage
literate

• Went over text mentioned in LRM.

• Challenged you on whether behavioral runtime coverage is something to be
used on your next project

• Are you convinced Runtime Behavioral Coverage can help you? Why?

	Slide 1: PSS Comes of Age: Runtime Behavioral Coverage, Methodology and More
	Slide 2: Agenda
	Slide 3: PSS Runtime Behavioral Coverage – What is it?
	Slide 4: Goals of this presentation
	Slide 5: PSS Runtime Behavioral Coverage – Example
	Slide 6: PSS Runtime Behavioral Coverage – Example
	Slide 7: Runtime Behavioral Coverage Simulation Flow Example
	Slide 8: PSS Runtime Behavioral Coverage – Motivation and Benefits
	Slide 9: Monitor “sequence” activity operator
	Slide 10: Monitor “concat” activity operator
	Slide 11: Monitor inline constraints
	Slide 12: Monitor “schedule” operator
	Slide 13: Monitor “schedule” operator
	Slide 14: Monitor overlap operator
	Slide 15: Monitor select operator
	Slide 16: Hierarchical Monitors for composing coverage Models
	Slide 17: Cover Reports
	Slide 18: Covergroups in Monitors
	Slide 19: Verification flow example
	Slide 20: Reactive Runtime Example Design
	Slide 21: Reactive Runtime Example Testbench
	Slide 22: Reactive Runtime Example PSS Generation Model
	Slide 23: Reactive Runtime Example – Generated Test Cases
	Slide 24: Reactive Runtime Example PSS Coverage Model
	Slide 25: Reactive Runtime Example Coverage Report
	Slide 26: Summary

