
High-Speed Emulation
Framework for Performance

Analysis of GenAI SoC design
Abhishek Saksena, Kalyan Kar, Saksham Mehra

GenAI: Model and Workload Growth Trajectory

2024 / 08 / 29 2

Number of parameters in genAI model are increasing exponentially

● More parameters necessitate a proportional increase in DRAM bandwidth.
● Higher daily usage requires improved power efficiency.
● Rigorous pre-silicon verification is essential to ensure performance and power targets are met.

Traditional Platforms for SoC performance testing

2024 / 08 / 29 3

SoC Perf C Model

● Can run Synthetic tests for
latency & BW check

● Benchmark/use case traces can
also be run

● Simulation speed - decent.
● Perf numbers might be little

different from actual RTL/silicon
run. Correlation with RTL results
needed

● Ideal for usecase/benchmarks
testing as well as synthetic tests

Platform availability :
Early in design cycle

SoC RTL Simulation

● Can run Synthetic tests for
latency & BW check

● Full Use-case & Benchmark run -
not feasible. Takes several days
to complete

● Simulation speed - slow.
● Performance numbers close to

silicon
● Debug visibility: high

Platform availability :
Very Early in design

cycle

SoC RTL Emulation

● Synthetic tests for latency & BW
check – not easy

● Benchmark/Use-case can be run
easily

● Simulation speed - very fast.
● Performance numbers very

close to silicon
● Debug visibility: limited
● Ideal for usecase/benchmarks

testing

Platform availability :
Late (After production firmware

bringup)

Need for a ‘new’ platform

● Importance of Benchmark execution: Crucial for
evaluating SoC design performance.

● Need for Emulation Platform: Required for stress
testing performance use cases early in the project
cycle without software dependency.

● Left-Shift Requirement: Early emulation helps find
critical bugs and enables architectural explorations,
allowing feedback for re-synthesis within the same
project cycle.

● Cost-Effectiveness: Emulation capacity are scarce
and expensive; solutions must be cost-effective to
optimize their usage.

● Stimulus Control and Accuracy: Solutions should
offer easy stimulus control and be cycle accurate for
testing synthetic pattern

2024 / 08 / 29 4

Vestibulum nec
congue tempus

Lorem ipsum dolor sit
dolor amet, consectetur

nec adipiscing elit, sed do
ipsum eiusmod tempor.

Donec facilisis lacus eget
sit nec lorem mauris.

Issues with traditional SOC emulation
testbench ?

● Lite Uncore Emulation model: Introduce an
'uncore' emulation model.

● Uncore SoC model Components: Includes
interconnects, memory controller, and
DRAM/PHY blocks, with compute and
multimedia cores stubbed.

● Independence from CPU Bootup: No
dependency on CPU bootup or production
firmware availability.

● Traffic Generator Integration: Add a traffic
generator at IP initiator ports to create
synthetic and use case traffic without booting
up the cores.

Solution

Proposed Testbench Structure

2024 / 08 / 29 5

Memory
Controller

Interconnect

CPUIP3IP2IP1

PHY+LPDDR

Memory
Controller

Interconnect

CPUIP3IP2IP1

PHY+LPDDR

TG TG TG TG

DUT DUT

● Easier Stimulus Control: Traffic generators reduce software overhead and dependence. Offers finer stress
control.

● Integration of Monitors and Loggers: Simplifies debugging in the 'lite' testbench
● Reduced Emulator Capacity: Major compute cores are stubbed out, occupying less emulator resource; improving

overall capacity utilization for all users
● Improved simulation speed: High speed run due to synthesizable stimuli generator; no emulation stalling due to

software-based verification collaterals

SW controlled Stimulus generation Transactor based
testbench - Stimulus

control

Traffic Generator

2024 / 08 / 29 6

Hybrid AXI Transactor

Software
Testbenc

h

DPI Call

Emulator board

DUT

● Lack of Cycle Accuracy: Transactions are driven into the DUT
indeterministically and lack timing accuracy, not ideal for performance
evaluation

● High Software Overhead: Enabling cycle accurate timing mode requires
syncing after every transaction, stopping/stalling the design clock. Severely
degrading emulation utilization.

● Expensive DPI Calls: In benchmarks with millions of transactions, overall test
runtime suffers due to DPI calls bottleneck.

Software
Testbench

DPI Call

Emulator board

DUT

AXI
Packet

Start TP /
Stop TP /
Pause TP

DRAM Memory
Trace

Player Files DRAM Memory

Backdoor Load

Convert
to hex
format

Fully synthesizable trace player

● Trace Player Synthesis: Synthesizes complete trace player along with the SoC design

● Trace loading Support: Transactions and delay information are converted to a hex file
and loaded into board memory and played back with 100% timing accuracy.

● Transaction Playback and Control: Trace player can be started, stopped, or paused
using API, playing traffic in a cycle accurate manner

● On board Memory for Emulation Platforms: Industry standard platforms like ZeBu
have enough memory on board to accumulate large use case trace files (e.g., 1M
transaction trace fits in 16 MB memory)

AMBA
Master/Slave TP Memory

AMBA
Master/Slave

Results / Findings

2024 / 08 / 29 7

● Use Case Performance Verification: Ideal for long running GenAI benchmarks which involves
millions of memory transactions . Full performance usecase verification completed on SoC RTL well
before design freeze, providing feedback to architects within the same project cycle.

● Additional Applications: MMU cache sizing studies, ROB depth analysis, Tuning for QoS
performance settings for architectural explorations leading to next generation designs with better PPA.

