
Noise Reduction in
Coverage-Based FV

Gilboa Alin, Emilia Katz

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Formal Verification becomes Mainstream
FV usage is increasing

• Harry Foster’s report

Impact of FV:
• Early bug finding
• Design exploration
• Deep bug-hunting

Full responsibility or just an Add-on?

FV Signoff Challenge
Full responsibility |-> Signoff criteria

Dynamic Validation (DV) flow is well established

FV flow requires Coverage cleanup for signoff

Testbench (TB)
development

Simulations,
Regressions

Coverage (code,
functional)

Properties/TB
development

FV run,
convergence Coverage

Signoff

Understanding FV Coverage
• Coverage can be measured on:

• inputs/outputs, code statements, branches, expression

• Stimuli coverage: can each cover be covered?
• Finds overconstraints

• Checker coverage: verify all behaviors are checked

Best method for design reliability, although not absolute

Coverage Cleanup Issue
• Commercial tools create covers and perform checks
• High volume of covers leads to numerous violations
• Manual inspection of violations:

• time-consuming and error-prone
• Improper methodology can result in:

• Premature termination of cleanup efforts
• 'Streetlight effect’ – focusing only on easily visible issues

A robust FV cleanup methodology is essential

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Stimuli Cleanup - Traditional
How to efficiently clean thousands or more unreachable covers?

Traditional cleanup method: Covers pattern matching
• Group violations by signal names for collective handling

• For example, obsolete_feature
• Can reduce massively the list of violations
• Remained violations require manual inspection
• Risks errors of waiving wrong covers

• case1_obsolete_feature_2
• if_obsolete_feature_3
• obsolete_feature_replacement_3
• temp_cov1
• toggle_signal_abc123

Stimuli Cleanup – Invert Checking Process
• Traditional ‘cleaning stimuli failures’
• Adopt the 'stimuli overconstraint cleanup' method:

1. Remove all assumptions and run Coverage check
• Unreachable à deadcode and not Overconstraint. Waive

2. Add assumptions with high confidence. Run Coverage again
• Assumptions from spec, known restrictions, or checked by neighbor block
• Unreachable à Waive

3. Continue adding assumptions and waivers
4. Remainder, if exists à manual review

Original results

Deadcode

1st assumption

2nd assumption

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Missing Checker Cleanup - COI
Cone of Influence (COI) is a structural check

• Simple, quick, coarse results
Flow for cleaning COI:

1. Remove dangling logic
• Add a dummy assertion on each output
• Run COI check. Out-of-COI à dangling, waive

2. Check out-of-COI outputs
• Remove dummy assertions, and rerun COI
• Only outputs are relevant

• Add assertions for out-of-COI outputs

Result: Quick and full cleanup

Missing Checker Cleanup – Proof Core
• Proof core – actual part of an assertion’s COI needed for proving it

• Runs after FV engine is complete
• Cleanup involves writing more assertions
• How to clean it efficiently?

• Our methodology:
• Prioritize the cover point with the largest fanin cone

• Adding an assertion here may cover other out-of-proof points
• Extra care needed for undetermined assertions

• Some cover points may change status when assertion is resolved
• Address logic unreachable due to gating

• More details in the next slide

Proof-Core – Gated Logic
• Reachable logic may be gated

• ‘X’ is reachable. ‘Y’ not, because ‘DFX==0’
• ‘X’ is part of structural COI
• ‘X’ is flagged as out of proof-core

• How can we know it, and can we waive it?

• Our methodology:
• Add cutpoints on unreachable signals (‘Y’)
• Run COI check again

• New out-of-COI are those driving only gated logic
• Waive them

• Some covers in the cone of ‘X’ are part of other cones
• Therefore, not waived

Waiving such covers saves a lot of debug time

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Results
• Flow applied in several designs and helped finding bugs like:

• Wrong assumptions
• Missing or partial assertions

• Stimuli violations reduced to nearly zero in a short time

Results – cont.
• Checker violations reduced sharply, but require more work

• Understanding the intent behind internal signals violations

Agenda
• Motivation and problem statement
• Stimuli cleanup methodology
• Checker cleanup methodology
• Results
• Summary and next steps

Summary
• Coverage checks are crucial for verifying FV work is completed
• Lots of data à flows + automation needed
• We were able to achieve clean stimuli and checker using this flow
• Bugs were uncovered and addressed:

• Through additional assertions
• By resolving unreachable covers
• If not detected, could become escapees, since FV is the sign-off tool

Coverage has been integrated into the FV signoff process, achieving
high-quality cleanup efficiently and within a practical timeframe

Future Work
• Ongoing enhancements to our flows, targeting special cases:

• Scalability for large design projects
• Integration with black-box components
• Efficient merging of various coverage types in proof-core analysis

• e.g., branch, statement

• Exploring strategies for efficient deployment of Mutation coverage

ありがとうございます

Questions?

Backup

