
Impact of a 64-bit Vedic Multiplier on Processor,
Multi-Core, and DSP Performance

64 ビット ヴェーダ乗算器がプロセッサ、マルチコア、
DSP パフォーマンスに与える影響
Lakshya Miglani & Gopi Srinivas Deepala

Silicon Interfaces®
info@siliconinterfaces.com
www.siliconinterfaces.com

Kon'nichiwa & Introduction

• The 64-bit binary Vedic Multiplier uses Urdhva Tiryakbhyam
sutra (algorithm) discovered by Scientist Bharati Krishna Tirtha
(1884-1960)

• 64ビットバイナリヴェーダ乗算器は、科学者バーラティ・クリシュナ・
ティルタ（1884-1960）によって発見されたウルドヴァ・ティリヤクビヤ
ム・スートラ（アルゴリズム）を使用します。

• A 64-bit multiplier using this algorithm shows improved
efficiency and performance, crucial for Arithmetic Logic Units in
processors, multi-core systems, and Digital Signal Processors
(DSPs) and significantly reduces computational steps,
enhancing Power, Timing, and Area (PTA) metrics

Continued…

• The sutra introduces a fixed pattern novel “vertically and
crosswise” “and” and then concatenation operation to calculate
partial products and add all those vector values with padded
zeros to get final product, thereby simplifying multiplication and
reducing computational complexity.

• 経典では、固定パターンの新しい「縦横」の「そして」と連結演算を導
入し、部分積を計算し、すべてのベクトル値にゼロを埋め込んで最
終積を得ることで、乗算を簡素化し、計算の複雑さを軽減しています。

Motivation
• Vedic Multipliers offer a novel, precise alternative for computation in design

frameworks, addressing limitations and reducing critical errors in
conventional methods.

• Most Vedic Multipliers in industry develop base components for 4-bit, 8-bit,
16-bit Vedic Multiplier then 32-bit and 64-bit Vedic Multipliers are used
using these component as libraries. 業界のほとんどのヴェーダ乗算器は、4
ビット、8ビット、16ビットのヴェーダ乗算器の基本コンポーネントを開発し、これら
のコンポーネントをライブラリとして使用して32ビットおよび64ビットのヴェーダ乗
算器が使用されます。

• This leads to more power usage, higher area and lesser speeds.

• The industry needs a more fundamental Vedic Multiplier with pure and
native implementation of the algorithm (アルゴリズムのネイティブ実装) for
scalable to larger bit operations as well as save power, area and increases
speed.

Algorithm for Partial Product (次は日本語…)

Figure 1: Steps in Vedic Multiplication to

calculate partial product

• The steps shown in Figure 1 is

used to calculate partial

product for Vedic

Multiplication, which is same

for binary number or decimal

number multiplication.

• Further we will demonstrate

this for 4-bit Vedic

Multiplication and using the

same logic we can go to 64-bit

Vedic Multiplication.

部分積のアルゴリズム

Figure 1: Steps in Vedic Multiplication to

calculate partial product

ステップ1: LSBから始めて垂直に掛
け算する

ステップ2: 偶数の場合は増分/減分

を交差的に乗算し、奇数の場合は
中央のビットを乗算してすべての
ビットがカバーされるまで乗算します

ステップ3: LSBを削除し、偶数ビット
の増分/減分ビットを横方向に掛け

合わせ、奇数ビットの中央ビットを縦
方向に掛け合わせてMSBだけが残
るまで掛け合わせます。

Vedic Multiplication for 4-bit

Figure 2: Line diagram for the native Urdhva

Tiryagbhyam 4-bit algorithm.

1. Partial Product
• The steps involved in

Figure 1 for partial

product which is for both

decimal and binary

numbers are now

illustrated by a line

diagram for 4-bit binary

multiplication and is

shown in Figure 2 to

calculate partial product

which is denoted by ‘k’

vectors.

Figure 3: K values for 4-bit Vedic Multiplier to generate

Partial Product

After crisscross and

vertical “and operations”

on both of the 4-bit binary

numbers i.e. ‘a’ and ‘b’,

every combination is

placed using

concatenation operation

in different “k” values (異
なる「k」値での連結演算)

according to the Urdhva

Tiryakbhyam sutra

Continued…

Figure4. Individual bit concatenation of criss-cross

multiplication for 4-bit Vedic Multiplier.

• Then after calculating all

the k values the ‘s’ vector

is formed by

concatenating specific bits

from sequence of partial

products ‘k’, ensuring

correct alignment and

padding.

2.Concatenation of Partial Products

Continued…

• Each ‘s[i]’ corresponds to a distinct bit position in the output, ranging from
the least significant bit (‘s[0]’) to the most significant bit (‘s[3]’) for 4-bit
Vedic Multiplier.

• The code strategically includes `1'b0` values to maintain proper alignment
and padding within the final output structure, optimizing the computational
process. (コードには、最終的な出力構造内で適切な配置とパディングを維持し、
計算プロセスを最適化できるように、戦略的に `1'b0` 値が含まれています。)

• The concatenation operation is also exclusively used to ensure precise
alignment throughout this process.

3. Result (product of ‘a’ and ‘b’) for 4-bit multiplication

= s[0] + s[1] +s[2]+ s[3];

Continued…

Vedic Multiplication for 64-bit

Figure 5: Snippet for range of K values for 64-bit Vedic Multiplier to generate Partial Product

1. Partial Product

Continued..
• Using the same Urdhva Tiryagbhyam sutra (algorithm) we have

generated partial product values i.e. ‘k’ for 64-bit native Vedic
Multiplier as shown in Figure 5 previous slide (図5前のスライド).

• By following the same three steps that are discussed above in

Figure 1 (slides 5/6), we have the ‘k’ vector for 64-bit as:
• In the Figure 5 starting from k[0] value that is vertically ‘and’ operation

on the LSBs (k[0]はLSBに対して垂直に「AND」演算された値である).

• The middle value k[63] in which we are covering the crisscross ‘and

operation’ for all of the 64 bits and then combine them using the
concatenation operation (64ビットすべてに対して「AND演算」を交差
させ、連結演算を使用して結合する).

• In the final step that is k[126] value, which is the vertically ‘and’
operation on the MSBs (MSBの垂直方向の「AND」演算).

Figure 6: Extreme values for individual bit concatenation of partial product vector in 64-bit Vedic

Multiplier

2.Concatenation of Partial Products

Continued..

Continued..

• Concatenation of individual bits of partial product formed using
crisscross multiplication is now used to form “s” vector for further
process.

• Figure 6 illustrates the snippet showing the initial and last value of
‘s’ vector.

• Each ‘s[i]’ vector is formed by placing ‘k[x][y]’ vectors at a specific
position (各「s[i]」ベクトルは、「k[x][y]」ベクトルを特定の位置に配置する
ことによって形成される。) which is defined as:

• k[x]: [Concatenation of all the ‘k’ values in the descending order and
placing ‘i’ number of zeros at MSB and LSB]

• k[y]: k[i]

Figure 7. Result for multiplication of 64 bit numbers using ‘s’ vector

• These ‘s’ vectors, collectively contributing to the final product. As shown

in figure 7, the final product of two 64-bit numbers ‘a’ and ‘b’ is achieved
by adding all the ‘s’ vectors (2つの64ビット数「a」と「b」の最終的な積
は、すべての「s」ベクトルを加算することによって得られる。)

3. Result (product of ‘a’ and ‘b’) for 64-bit multiplication

Continued..

RESULT

Figure 8: Simulation result Window

The multiplication of ‘a’ and ‘b’, with decimal values of

18,446,744,073,394,194,650 and 18,446,744,072,077,428,285

respectively, yields the product ‘re =

340,282,366,885,013,792,836,538,441,420,705,675,250’. Figure 8

confirms the consistency of this result using Vedic multiplication for

64-bit numbers with binary representations of ‘a’ and ‘b’.

RESULT Continued..

Parameter Booth encoded
parallel

multiplier

Modified
Booth Encoding

Multiplier

Vedic
Multiplier

Gate Count 20557 17196 4604

Area (µm2) 102183 85983 23183

Power (mW) 13.7 12.1 3.24

• The Vedic multiplier outperforms traditional designs

with fewer gates, optimizing logic for scalability and

cost-efficiency. It achieves superior area efficiency,

maximizing IC space, and advances in power

consumption for sustainable computing.

APPLICATION
• Digital Signal Processing: Improves signal manipulation speed

and accuracy, benefiting telecommunications and multimedia.

• Image Processing: Efficiently handles large datasets, and speeds
up image transformation in medical imaging and computer vision.

• Cryptography: Ensures quick, secure multiplication for stronger
financial transaction and communication encryption.

• Communication Systems: Facilitates seamless signal and data
stream processing, enhancing network transmission efficiency.

• Overall Impact: The Vedic multiplier promises significant
advancements in computational efficiency and digital system
performance.

Conclusion

• Unlike conventional Vedic Multipliers in the industry, which use base
components for 4-bit, 8-bit, and 16-bit designs that are scaled up to
32-bit and 64-bit using these components as libraries, our
innovative architecture achieves a distinct advantage by reducing
propagation delay to just a two-step process (伝播遅延をわずか2段
階のプロセスに短縮).

• Physical synthesis results demonstrate that the proposed Vedic
multiplier architecture is three times (3回) more efficient than the
comparable Booth architecture.

• Our Vedic Multiplication outperforms existing methods by offering
lower power consumption, smaller area requirements, and faster
operation speeds (lower delay).

Arigatō Gozaimasu

