SYNOPSYS°

Conquering UCle 1.1 Multi-die System Verification Challenges

Interface Verification Critical for Chiplet and UCIe Adoption

Die-to-Die IP design starts to grow 5X in 5 years***

" \$50B in Chiplet revenue forecasted by 2024"

"Led by HPC & Automotive"

"The time-to-market may be 60% faster for initial chiplet designs compared to integrated designs"

*Source: Gartner 2021 **Source: IBS 2023 ***Source: IP Nest 2022

"The highest-cost design step is functional verification, and emulation capabilities are very important"

Multi-Die System Examples

Enabled by More Cost-Effective Multi-Die Packaging Technologies!

INTEL - Ponte-Vechio Xe-HPC GPU

100B+ Tr's, 47 Active Tiles, 5 Process Nodes, EMIB/Foveros

APPLE - M1 UltraMax CPU

2x Dies, 114B Transistors, 2.5TB D2D BW, Silicon Connected

AMD - EPIC Server CPU

100B+ Tr's, 47 Active Tiles, 5 Process Nodes, EMIB/Foveros

TESLA - 9 Peta Flops AI-Training

25x 50B Transistors, Reconstructed fanout wafer

Optimizing Architectural Functions into Chiplets

UCIe 1.1 Focuses on Key Automotive Customer Asks!

Safety, Security, Reliability and Ecosystem Adoptions

- Preventive Monitoring
- On-field Repairability
- Ecosystem fit through multiple existing protocols
- More ...

UCIe 1.1 Verification Requirements

1 Preventive Monitoring

On-field Repairability

3 Ecosystem Adoption

4 Cost Optimization

Compliance Testing

Preventive Monitoring

Link Health Monitoring Considerations

- Continuous Monitoring: Per-lane eye-margin measurement and control to shift eye-margin
- Failure rate of link: Periodic insertion of parity bytes
- PHYRETRAIN: Retraining of link during runtime to ensure link safety

Failure Detection Considerations

- Reporting of failure: Standard UHM registers to log error along with timestamp
- Interrupt: Indication to the system about link failure

Preventive Monitoring – Synopsys UCIe VIP

Design and Verification considerations	VIP features
Continuous monitoring & reporting	 API Control eye margins during LTSM states Read/write UHM registers
Failure rate of link	Parity computation and correctionCallback to inject parity error
PHYRETRAIN	 Local and remote Adapter and PHY initiated retrain API Control retrain pattern count Corrupt retrain results Forcibly move to retrain state
Interrupt	API to enable/disable interrupts

Protocol checks to catch unexpected DUT behaviours

Preventive Monitoring – Synopsys UCIe VIP

API to initiate RETRAIN from Adapter layer

//API to drive RETRAIN
ds_seq.direct_ssm_state(svt_ucie_types::RETRAIN);

PHYRETRAIN entry Debug message

UVM_INFO /remote/sdgvips01/djindal/ucie_tb_restructure/vip/ucie_svt/ucie_phy_svt/src/svt_ucie_phy_ltsm.sv(116) @ 410850000000: uvm_test_top.ucie_env. ds die phy env.phy agent 0.phy [init] Phy LTSM transitioned to phy ltsm[phyretrain] state.

```
Field Description:
START TIME
                    Begin time of the transaction in ns.
                                                                                                                        PHY SB transfer log
END TIME
                    End time of the transaction in ns.
                   - Transaction Direction(Tx/Rx)from VIP perspective.
DIR(Tx/Rx)
SRC ID
                   - Indicates the source.
                   - Indicates the destination, where L stands for Local Die and R stands for Remote die
DST ID
OPCODE
                   - Indicates about the packet type as well either it carries 32b or 64b of data.
TAG
                   - Indicates the completion tag associated with the corresponding request.
MSGCODE
                    Indicates the type of Message.
                   - Indicates address of the request.
ADDR
MSGINFO
                   - Indicates the Message information.
                   - Indicates payload which can be 32 bits or 64 bits wide depending on the opcode ({Phase 2, Phase 3}).
DATA
COMP STATUS
                   - Indicates the completion status of the request.
                   - Indicates byte enable for the request.
MSGSUBCD

    Indicates the sub type of Message.

                                                                                                                     PHYRETRAIN start request
   START TIME
                      END TIME
                                              SRC ID
                                                         DST ID
                                                                        OPCODE
                                                                                       TAG /
                                                                                                  ADDR /
                       (in ns)
                                                                                      MSGCODE
                                                                                                MSGINFO
  41097.000000
                   41176.0000
                                                         PHY(R)
                                                                     MSG NO DATA
                                                                                                   0001
                                                                                                             : {}
                                                                                                                                           'h01
                                                                                       'hc5
  41557.000000
                    41636.0000
                                     RX
                                              PHY
                                                         PHY(R)
                                                                     MSG NO DATA
                                                                                       'hca
                                                                                                   0001
                                                                                                                                            'h01
  41895.000000
                   41975.0000
                                                                     MSG NO DATA
                                                                                                                                           'h01
```


UCle 1.1 Verification Requirements 1 Preventive Monitoring

2 On-field Repairability

3 Ecosystem Adoption

4 Cost Optimization

Compliance Testing

On-field Repairability

Repairability Considerations

- Redundancy mapping: Clock and valid lane mapping, single lane and two-lane data mapping
- REPAIR: Usage of Redundant pins to repair clock, valid and data lanes
- TRAINERROR: Repair of lanes is not feasible

On-field Repairability – Synopsys UCIe VIP

UCIe 1.1 Verification Requirements 1 Preventive Monitoring

2 On-field Repairability

3 Ecosystem Adoption

4 Cost Optimization

Compliance Testing

- Streaming Protocol usage considerations
 - *Flit formats*: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format Flit Format Name	PCle	CXL 68B	CXL 256B	Streaming		
Number	Filt Format Name	Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 256B End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bvtes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

- Streaming Protocol usage considerations
 - *Flit formats*: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format Nov	Flit Format Name	PCle	CXL 68B	CXL 68B CXL 256B	Streaming	
Number	Filt Format Name	Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 2568 End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bytes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

- Streaming Protocol usage considerations
 - Flit formats: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format Flit Format Name	PCle	CXL 68B	CXL 256B	Streaming		
Number	Filt Format Name	Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 256B End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bytes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

- Streaming Protocol usage considerations
 - Flit formats: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format Flit Format Name	PCle	CXL 68B CXL 256E	CXL 256B	Streaming		
Number	riit roilliat Naille	Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 256B End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bytes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

Enhanced Protocol considerations

- Stack mux: Muxing of different protocol and utilizing the bandwidth efficiently
- Arbitration: Per flit arbitration to utilize 100% bandwidth and didn't violate maximum percentage

Link initialization considerations

- Initialization & Negotiation: Negotiate and finalize multi-protocol mode, stack 0/1 enable, flitformat and stack bandwidth with remote link partner
- State Machine: Independent link state management for state machine for individual FDI interface in Multi-protocol mode

Data flow considerations

- Multiplexing: Muxing of data coming from independent data source
- Error Detection: CRC/parity error detection in D2D Adapter for all flit formats

Design and Verification considerations	VIP features
Link initialization	 Parameter exchange advertisement Clock gate handshake for independent FDI interface API to move to specific state
Data Flow	 Independent interfaces to transport data using multiple instances API Configure flit format Configure protocol for both stacks Data integrity check using CRC, parity etc.
Throughput	Per flit arbitration with 50% bandwidth
Error injection	 Callback To inject error in flit To corrupt sideband messages

Ecosystem Adoption – Synopsys UCIe VIP

API to configure multi-protocol

```
foreach(env_cfg.ds_protocol_cfg.fdi_cfg[i,j])begin
    if(i==0 || j==1)begin
    env_cfg.ds_protocol_cfg.fdi_cfg[i][j].configure_protocol(svt_ucie_types::CXL_3, svt_ucie_types::CXL_LATENCY_OPTIMIZED_WITH_OB_MODE, svt_ucie_types::STACK_0_CXL_CACHEMEM);
    end
    else begin
    env_cfg.ds_protocol_cfg.fdi_cfg[i][j].configure_protocol(svt_ucie_types::STREAMING, svt_ucie_types::CXL_LATENCY_OPTIMIZED_WITH_OB_MODE, svt_ucie_types::STACK_1_STREAMING_PROTOCOL);
    end
end
```

Configure Protocol debug message

```
UVM_INFO /remote/sdgvips01/vsheth/ucie_svt_vip_pou_client_19_12/vip/ucie_svt/src/svt_ucie_fdi_configuration.sv(773) @ 0.00000 ns: reporter [configure_protocol] FDI is configured with supported_protocol(CXL_3), supported_protocol_flit_fmt(CXL_LATENCY_OPTIMIZED_WITH_OB_MODE) and stream_id(STACK_0_CXL_CACHEMEM) with API call
UVM_INFO /remote/sdgvips01/vsheth/ucie_svt_vip_pou_client_19_12/vip/ucie_svt/src/svt_ucie_fdi_configuration.sv(773) @ 0.00000 ns: reporter [configure_protocol] FDI is configured with supported_protocol(STREAMING), supported_protocol_flit_fmt(CXL_LATENCY_OPTIMIZED_WITH_OB_MODE) and stream_id(STACK_1_STREAMING_PROTOCOL) with API call
```

Data Transfer on individual FDI lp data and lp valid

UCIe 1.1 Verification Requirements 1 Preventive Monitoring

On-field Repairability

3 Ecosystem Adoption

4 Cost Optimization

Compliance Testing

Cost Optimization

- Advance package considerations
 - Reusability: x64 link can operate as a x32 when supported and negotiated in MBINIT.PARAM
 - Optimization: Lesser fan-out and reduced die cost by reducing pins
- Enable x32 support using below two methods:
 - Link capability DVSEC register APMW
 - Physical Layer control register Force x32 width mode

Cost Optimization

Design and Verification considerations	VIP features
Parameter Exchange	 UCle-A x32 parameter exchange API Enable x32 support Bypass link states Move to specific link state
MB Repair	 API Control repair pattern count Corrupt repair result
MB Reversal	 API Control reversal pattern count Corrupt reversal result
Data Flow	 API Control inter packet delay Inject back pressure

Cost Optimization – Synopsys UCIe VIP

API to configure x32

```
//Configuring link width
env_cfg.ds_phy_cfg.configure_link_width(svt_ucie_types::X32_WIDTH, svt_ucie_types::X32_WIDTH);
```

Configure link width debug message

UVM_INFO /remote/sdgvips01/djindal/ucie_tb_restructure/vip/ucie_svt/src/svt_ucie_phy_env_configuration.sv(843) @ 0: reporter [configure_link_width] PHY modules are configured with supported_link_width(X32_WIDTH) and target_link_width(X32_WIDTH) with API call

B2B Data Transfer utilizing optimal link bandwidth

UCle 1.1 Verification Requirements 1 Preventive Monitoring

2 On-field Repairability

3 Ecosystem Adoption

4 Cost Optimization

Compliance Testing

Compliance Testing

PHY Compliance

Adapter Compliance

Protocol Layer Compliance

PHY Compliance

Test criteria	VIP features	VIP topology
Link Initialization	 API Trigger link initialization Control training pattern counts 	
Timing/Voltage margining	 API to control eye margins during LTSM states 	VIP as Chiplet0- DP
BER measurement	 Callback To inject CRC, parity errors To timeout sideband request 	PHY DUT as Chiplet0 - DP
Error injection	 API Control timeout of state Timeout sideband request Corrupt training pattern results Callback to block sideband response message 	VIP as Chiplet1 - UP

Golden Die: All above and ability to inject errors that cause timeouts on sideband messages as well as states

Adapter Compliance

Test criteria	VIP features	VIP topology
Injection of NOP/Test flit	API to enable flit injectionCallback to inject flits	
State Request	 API Enable state request injection Move to a specific state 	VIP as Chiplet0 - DP
Response sideband messages	 API to enable sideband response message injection Callback to block sideband response 	D2D Adaptor DUT as Chiplet0 - DP
Retry	 API Enable retry injection Enable/disable retry rules groups ACK/NAK indication of received flit 	VIP as Chiplet1 - UP

Golden Die: Support all formats, ability to inject above errors

Protocol Compliance

- Leverage PCIe and CXL Protocol compliances defined by those specifications
- Streaming protocols: use their respective compliance
- VIP features:
 - Ability to generate PCIe, CXL and streaming protocol scenarios
 - Callback to inject errors

PCIe Protocol layer

Compliance testing

Testing Phases

Phases	Phase1	Phase2	Phase 3
Goal	Bring Up	Data Flow	Error injection
Design Verification Consideration	Link upRDI bring upFDI bring up	Flit formatsCRC, parity, retry etc.Data integrity	 Error injection at each layer
VIP feature	 API Trigger link initialization Control training pattern counts 	 API Drive sideband and main-band traffic. Control parity and retry features Analysis port at each interface for scoreboarding All flit formats 	 Callback To inject errors To block sideband response message API Control timeout of state Delay sideband response message

Interface Verification Critical for Chiplet and UCle Adoption

Die-to-Die IP design starts to grow 5X in 5 years***

" **\$50B in Chiplet revenue** forecasted by 2024"

"Led by HPC & Automotive"

"The time-to-market may be 60% faster for initial chiplet designs compared to integrated designs"

*Source: Gartner 2021 **Source: IBS 2023 ***Source: IP Nest 2022

75%

Cost/Time spent in Qualification (25%) and Verification (50%)

Reducing Inter-logic SoCs Tape-out Risks

Pre-validated IP-VIP SoC Verification Kits Reduce Design Risk & Accelerate Time-to-Market

IP/Vendor Selection

- Broadest IP VIP portfolio
- Pre-tested, silicon-proven IP Subsystems for your SoC
- IP & SoC experts configure and customize to your requirements

IP Qualification

- Active engagement with spec bodies and eco-system partners
- Ready-to-go Compliance test suites for IP qualification
- Frees your team to work on your product differentiation

IP Integration

- Reference flows and services for IP integration and convergence between project teams
- First-time-right SoC integration speeds TTM

Synopsys SoC Verification Kit (SVK)

Accelerating SoC Verification with Synopsys IP, VIP and VCS

- Challenges
 - Expertise for UVM-based, scalable testbenches
 - Verification resource limitations
- SVK Benefits
 - Out-of-the-box verification solution for complex protocols
 - Tailor made for project-specific IP configuration
 - Accelerates the SoC testbench development
 - Enables testing of Synopsys IPs in Subsystem/SoC environment
 - Lowers integration risk through proven verification methodologies
- Available for HPC/Automotive protocols: UCle, PCle, CXL, DDR, HBM, Ethernet

Verify and Validate Your Multi-Die Interfaces

Synopsys UCIe IP-VIP Validated Together to Reduce Project Risk

Latest UCIe Specifications and Topologies

Synopsys UCIe VIP supports entire UCIe standard from PHY to Protocol layer covering all IP to System Level topologies

Co-validated with Synopsys IPs

Synopsys UCIe VIP used to validate UCIe IP from Synopsys and leading partners ensuring

Debug Productivity

Native VCS and Verdi integration provides high simulation and debug productivity for UCIe

Protocol Verification Solutions for all Use-cases

IP to SoC Level RTL Verification

Software development and system validation

Integrated IP-VIP setups for quick bring-up and verification

SYNOPSYS®