
Profiling and Optimization of Level 4 vECU 
Performance for faster ISO26262 Testing

Lukas Jünger1, Hitoshi Hamao2, Megumi Yoshinaga2 and Koichi Sato2

1MachineWare GmbH, Aachen, Germany
2Renesas Electronics Corporation, Tokyo, Japan



Agenda

● Motivation

● Introduction of Virtual ECUs

● Level 4 Virtual ECUs and SystemC TLM-2.0

● MachineWare Level 4 Virtual ECU Architecture

● Performance Optimization with InSCight

● Case Study

● Summary

2





Automotive Software Complexity
● Software-Defined Vehicle

○ Modern vehicle > 100. Mio LOC
○ SW becoming USP

● Bad software is expensive
● Managing complexity is key
● ISO26262/ASIL compliance

Problem:
● SW testing is hard to scale

4

C
om
plexity

1980 1990 2000 2010 2020

Motor
Control

Info-
tainment

Active
Safety

Connectivity

ADAS, AI



ISO26262 Requirements
● Strong requirements towards hardware and software

○ Many recommended techniques for ASIL qualification

Examples:
● ISO26262-4-2018: Product development on System Level

○ Back-to-back tests: Comparison of hardware and simulation model
○ Fault injection tests
○ Test of interaction/communication, Test of internal/external interfaces

● ISO26262-6-2018: Product development on Software Level
○ Simulation of dynamic behavior of the design
○ Analysis of boundary values
○ Code Coverage Analysis
○ Fault injection test, interface test, back-to-back comparison, …

5



Virtual Prototyping
● Virtual Platform: Full System Simulation
● Indispensable in software development

○ Everising SW and HW complexity
● Advantages over physical prototypes

○ Available earlier (shift-left methodology)
○ Full flexibility, deep introspection
○ Non-intrusive debug
○ Scalable deployment

6



MachineWare Virtual Platform / vECU
● Virtual Platform: System simulator executing unmodified software

○ e.g. RISC-V, ARM, RH850, …
● Assemble Virtual Platform from  “building blocks”

7

CPU

RAM

UART

CAN

LIN

GPU …

PCIe

USB

Simulation Model Library

CPU RAM CAN UART

Virtual Platform

Customer Target Software



Virtual ECU Levels

8

Host Compiled

Level 0 Level 1 Level 2 Level 3 Level 4 Physical ECU

Target Compiled

Full Production SW 
stack

Full Production SW 
stack

Application and 
Production 

Middleware

Application and 
Simulated 

Middleware
Production Code of 

Application
Simplified Application 

Model

Controller Model Application Level Simulation BSW Production BSW Full Binary Full Binary

AccuracySpeed



L4 vECU Popular Use Cases
• Software development

• Connect standard debuggers, IDEs
• Software test

• Automate software test in CI, scaleable without hardware ECU
• Fault injection test

• Inject faults via virtual bus, memory corruption, sensor value, …
• Code Coverage Analysis

• Generate code coverage reports for every commit in CI
• Co-Simulation

• Simulate several vECUs together connected 
• Test applications distributed over several ECUs

9



MachineWare Level 4 vECU Architecture
● Based on SystemC TLM-2.0 standard

○ Seamlessly integrate virtual HW models
○ Support QEMU models (QBox)
○ Create models in MW VCML

● Like physical hardware
○ Use debuggers, development tools, …

● Co-Simulate through common interfaces
○ e.g. FMI, SIL Kit, MW VSP

● Execute on-premise or in the cloud
● Flexible license model

○ Open-source and proprietary

10



vECU Performance Problems
● Faster vECU means increased productivity less cost

○ Faster turnaround
○ Reduced compute cost
○ Reduced energy consumption

● Slow vECU can prevent successful deployment
○ Test runtimes prohibitively long
○ Bad developer experience, less adoption

● Problem: How to find simulation performance bottlenecks?
○ vECUs are extremely complex (100-1000 component)
○ vECU combines models of many teams, limited expertise during integration
○ Combination of target SW and simulated HW effects

11



SystemC Compatibility
● Simulation is a compound of models

○ Models represent hardware blocks
○ SC_THREADS/METHODS for 

modeling hardware behavior
● Models communicate with kernel

○ wait() to yield time
○ b_transport() to access blocking 

transport interface
○ …

● Standardized API enables model 
interoperability
○ Binary model can link with binary 

kernel and communicate

12

SystemC TLM-2.0
Hardware Model

SystemC Kernel

Standardized API
- b_transport()
- wait()
- …



InSCight Architecture
● Goal: Identify slow models

○ Determine model compute overhead

● Solution: SystemC profiler
○ Event notifications
○ SC_THREAD/METHOD compute time
○ Kernel-internal state tracking

● Requirements
○ Minimum overhead
○ No change to the model code

13

1

2 2

3 3 3

Time

Model 1

Model 2

Model 3

Profile

AnalyzeOptimize



InSCight Flow

14

Profile

AnalyzeOptimize



Case Study: Gateway L4 vECU
● Renesas ECU target: Gateway

○ Multi-processor architecture
■ Several compute domains

○ Runs complex software stack
■ Several OS/RTOS
■ Cross domain communication

○ Specialized hardware for networking 
function

● vECU built using MachineWare 
technologies
○ Executes Renesas SW stack
○ Near real-time performance

15

Simulation Host

Host OS (Linux)

MW L4 Gateway vECU

CPU
Clusters

IO
Sub-
system

Network
Sub-
system

…

Target
Software
Partition

Target
Software
Partition

…



Case Study: Results
● Scenario: Data transfer using specialized HW

○ Target SW benchmark exercises driver code
○ Virtual HW models utilized for transfer function

● Goal: Identify performance bottlenecks leading to insufficient 
performance

● Technique: InSCight profile generation, analysis, model code 
optimization

16



Case Study: Results

17



Summary
● Level 4 vECU

○ Run unmodified target software
○ “Like real hardware”
○ Accelerate ISO26262 testing

● SystemC TLM-2.0 L4 vECU
○ Standardized interfaces
○ Reuse of existing HW models
○ Enables profiling

● SystemC Profiler: InSCight
○ Tool to help handle platform complexity
○ Can unveil significant speed ups
○ Compatible with any SystemC TLM-2.0 simulator

18


