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Automotive Software Complexity
● Software-Defined Vehicle

○ Modern vehicle > 100. Mio LOC
○ SW becoming USP

● Bad software is expensive
● Managing complexity is key
● ISO26262/ASIL compliance

Problem:
● SW testing is hard to scale
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ISO26262 Requirements
● Strong requirements towards hardware and software

○ Many recommended techniques for ASIL qualification

Examples:
● ISO26262-4-2018: Product development on System Level

○ Back-to-back tests: Comparison of hardware and simulation model
○ Fault injection tests
○ Test of interaction/communication, Test of internal/external interfaces

● ISO26262-6-2018: Product development on Software Level
○ Simulation of dynamic behavior of the design
○ Analysis of boundary values
○ Code Coverage Analysis
○ Fault injection test, interface test, back-to-back comparison, …
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Virtual Prototyping
● Virtual Platform: Full System Simulation
● Indispensable in software development

○ Everising SW and HW complexity
● Advantages over physical prototypes

○ Available earlier (shift-left methodology)
○ Full flexibility, deep introspection
○ Non-intrusive debug
○ Scalable deployment
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MachineWare Virtual Platform / vECU
● Virtual Platform: System simulator executing unmodified software

○ e.g. RISC-V, ARM, RH850, …
● Assemble Virtual Platform from  “building blocks”
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Virtual ECU Levels
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L4 vECU Popular Use Cases
• Software development

• Connect standard debuggers, IDEs
• Software test

• Automate software test in CI, scaleable without hardware ECU
• Fault injection test

• Inject faults via virtual bus, memory corruption, sensor value, …
• Code Coverage Analysis

• Generate code coverage reports for every commit in CI
• Co-Simulation

• Simulate several vECUs together connected 
• Test applications distributed over several ECUs
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MachineWare Level 4 vECU Architecture
● Based on SystemC TLM-2.0 standard

○ Seamlessly integrate virtual HW models
○ Support QEMU models (QBox)
○ Create models in MW VCML

● Like physical hardware
○ Use debuggers, development tools, …

● Co-Simulate through common interfaces
○ e.g. FMI, SIL Kit, MW VSP

● Execute on-premise or in the cloud
● Flexible license model

○ Open-source and proprietary
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vECU Performance Problems
● Faster vECU means increased productivity less cost

○ Faster turnaround
○ Reduced compute cost
○ Reduced energy consumption

● Slow vECU can prevent successful deployment
○ Test runtimes prohibitively long
○ Bad developer experience, less adoption

● Problem: How to find simulation performance bottlenecks?
○ vECUs are extremely complex (100-1000 component)
○ vECU combines models of many teams, limited expertise during integration
○ Combination of target SW and simulated HW effects
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SystemC Compatibility
● Simulation is a compound of models

○ Models represent hardware blocks
○ SC_THREADS/METHODS for 

modeling hardware behavior
● Models communicate with kernel

○ wait() to yield time
○ b_transport() to access blocking 

transport interface
○ …

● Standardized API enables model 
interoperability
○ Binary model can link with binary 

kernel and communicate
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InSCight Architecture
● Goal: Identify slow models

○ Determine model compute overhead

● Solution: SystemC profiler
○ Event notifications
○ SC_THREAD/METHOD compute time
○ Kernel-internal state tracking

● Requirements
○ Minimum overhead
○ No change to the model code
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InSCight Flow
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Case Study: Gateway L4 vECU
● Renesas ECU target: Gateway

○ Multi-processor architecture
■ Several compute domains

○ Runs complex software stack
■ Several OS/RTOS
■ Cross domain communication

○ Specialized hardware for networking 
function

● vECU built using MachineWare 
technologies
○ Executes Renesas SW stack
○ Near real-time performance
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Case Study: Results
● Scenario: Data transfer using specialized HW

○ Target SW benchmark exercises driver code
○ Virtual HW models utilized for transfer function

● Goal: Identify performance bottlenecks leading to insufficient 
performance

● Technique: InSCight profile generation, analysis, model code 
optimization
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Case Study: Results
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Summary
● Level 4 vECU

○ Run unmodified target software
○ “Like real hardware”
○ Accelerate ISO26262 testing

● SystemC TLM-2.0 L4 vECU
○ Standardized interfaces
○ Reuse of existing HW models
○ Enables profiling

● SystemC Profiler: InSCight
○ Tool to help handle platform complexity
○ Can unveil significant speed ups
○ Compatible with any SystemC TLM-2.0 simulator
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