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Abstract—In this paper, we present our compositional simulation interconnect framework for exploring Software-

defined Vehicle implementations from cloud to edge. The framework enables heterogeneous clients’ connections to 

create digital twins of Electronic Control Units (ECUs) of a Vehicle at different abstraction levels connected to real 

traffic scenario simulators, sensor models and mechatronic systems. The design methodology behind the framework is 

based on three enabling pillars: the gateway concept, Digital Twin Description Language (DTDL), and automation 

flow. An adaptive cruise control application is used as a demonstration of the interconnect framework.   
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I.  INTRODUCTION  

In the rapidly evolving landscape of the automotive industry, the integration of advanced digital technologies 

has become paramount for innovation and competitiveness. One such transformative approach is the concept of  

Software-Defined Products (SDP) and the vehicle is just an example. Software-Defined Vehicle (SDV) is a new 

technology term that describes a vehicle whose features and functions are primarily enabled through software; the 

concept has grown rapidly because of the ongoing transformation from a vehicle that is mainly hardware-based to 

a vehicle that is a software-centric electronic device on wheels. SDV implementations are mainly driven by cloud-

native development [1].  

A key enabler of this transition to SDVs is the utilization of digital twin technology that describes a virtual 

replica of a physical asset capable of mimicking its behavior to better assess and understand its operation under 

both hypothetical and real scenarios [2]. Digital twin implementations are also driven by cloud-native development. 

Leveraging both technologies in automotive has a great benefit in software validation. For example, simulating “on 

the cloud”, the vehicle electronic control unit (ECU) software under real traffic conditions with ego vehicle 

dynamics, a noisy sensor or an adversarial attack and monitoring the safety and security of the vehicle software 

before deploying the software on the edge ECU [3].  

“Pre-Silicon” ECUs include either Virtual System on a Chip (SoC) Platforms (running locally on a PC or a 

Virtual Private Cloud) or Register Transfer Language (RTL) representation of SoC Designs written in Hardware 

Description Languages (HDL) running on Hardware Assisted Verification (HAV) Platforms including HW 

emulation [4] and Field Programmable Gate Array (FPGA) Prototyping Systems [5]. High-computing ECUs 

include embedded microcontrollers with legacy Controller Area Network (CAN)/Local Interconnect Network 

(LIN) connectivity, and high-end processors with automotive ethernet switch (zonal) connectivity, running 

hypervisors, Real-Time OS, middleware, and applications [6]. Rapid advances in Advanced Driver-Assistance 

System (ADAS) have influenced the design of these servers as well to include artificial intelligence (AI) 

accelerators for perception.  

Building an SDV-based methodology to deploy the SW developed on the cloud on a Pre-Silicon representation 

of an edge ECU has the benefit of evaluating different design architectures of the ECU design before fabrication. 

In this paper, we demonstrate the usage of our compositional simulation interconnect framework (Veloce System 
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Interconnect (VSI)) [7] that streamlines the verification process of the software implementation of SDV in the 

Software-in-the-loop (SIL) layer to deploying the SDV algorithm on a FPGA prototyping system (proFPGA Quad 

motherboard [5]) as an edge ECU as shown in Figure 1. The FPGA prototyping system is programmed with a high-

performance RISC-V-based SoC design.  

 

Figure 1. SDV-based Methodology w/FPGA Prototyping. 

Extending SDV implementation to a complete digital twin requires the existence of a system interconnect 

framework enabling heterogeneous clients’ connections and co-simulating all digital twin elements, in a 

synchronized and deterministic manner. There are generally three approaches for combining models for 

compositional simulation. 1) Model Transformation: The entire system model is built into one tool for the purpose 

of simulation. 2) Model Exchange: The exchange of models between tools to run a simulation in one of them. 3) 

Co-simulation: Loosely coupling two or more simulators [8]. Each approach has its pros and cons. Co-simulation 

maintains the operational semantics that is why we have adopted this approach when building our interconnect 

framework.  

II. COMPOSITIONAL SIMULATION FRAMEWORK 

We have developed an optimized interconnect framework [7] enabling heterogeneous clients’ connections to 

create digital twins in the areas of automotive, robotics, avionics, and medical verticals. The interconnect features 

conformance with well-established electronic design automation standards: SystemC TLM 2.0 [9], JModelica FMI 

2.0 [10], and Inter-Process Communication (IPC) connections.  

     The framework allows mixed-fidelity modelling. It allows connections of different client types e.g. 

sensor/scenario simulators, mechatronic systems simulators, dashboard software, cloud services, compute/think 

modules at different abstraction levels including C/C++ modules, and any platforms that have C/C++ interfaces, 

SystemC TLM models, Python modules, ROS modules, virtual platforms (VPs), RTL designs on digital simulators/ 

HW assisted verification platforms and external HW boards with physical connections (e.g. Ethernet, CAN). The 

design methodology behind the Digital Twin Interconnect Fabric is based on three enabling pillars: the gateway 

concept, Digital Twin Description Language (DTDL) and automation flow for building the interconnect 

framework, as shown in Figure 2.  

A. The Gateway Concept 

Each digital twin component port is connected to the digital twin interconnect fabric backplane server through 

a “gateway”. A gateway executes data conversion and routing into digital twin interconnect fabric simulated & 

physical communication protocols. Gateways are categorized into Language2Protocol 



 

3 

 

(C++/C#/SystemC/Python/ROS), Pre-Silicon (VPs, RTL), Post-Silicon (Hardware-in-the-loop (HIL)) and 

Specialized (Sensors, Actuators, Cloud Services, 3rd party Tools). Communication Protocols of the backplane 

server include for example: Ethernet, CAN, Advanced Extensible Interface (AXI), etc. 

 

Figure 2. Digital Twin Interconnect Fabric Framework. 

B. Digital Twin Description Language 

This is an intermediate & proprietary language format upon which system modelling languages can be built on 

top. It defines the connectivity between different digital twin components. The syntax and semantics of this 

language are beyond the scope of this paper due to space limitations. However, the concept can be illustrated with 

the example in Figure 3, which will be discussed in Section III. 

C. The Automation Flow 

This flow mainly eases the generation of the infrastructure of the backplane server and remote clients' gateways 

needed to connect the heterogeneous components of a Cyber-Physical System (CPS) including its compute or think, 

sense, actuate and connect elements. The user design entry is the DTDL to describe the architecture of the digital 

twin and a builder that parses the language and generates the infrastructure needed to connect the different models 

and tools, then again comes the role of the user to insert his/her System Under Test (SUT) or Design Under Test 

(DUT) and kick-off the operation of entire compositional simulation using the digital twin simulator managing the 

simulation time with a unified timing engine while allowing the visualization of the Gateways’ interconnect signals. 

• Digital Twin Builder: Developing a user’s own digital twin configuration requires a relatively high level 

of knowledge and expertise in many areas and a considerable amount of development time. Digital Twin 

Builder provides an automated flow where users can create the skeleton of their desired digital twin 

configuration easily.  

• Digital Twin Simulator: The simulator provides an interface for the user to be able to control the simulation 

time and display information about the digital twin during the simulation. An X-Term window pops up 

for each of the DT components and a command prompt interface for “Digital twin Simulation Control” 

provides full control over the time advancement and can display some useful information about the system.  

III. CASE STUDY 

 In this section, we demonstrate a comprehensive three-client automotive digital twin to showcase the SDV 

methodology for validating an ADAS algorithm, enabled through our compositional simulation framework. This 

example exhibits the framework’s adaptability to deploy an ADAS algorithm from high-level SW in (A) to Pre-

silicon in (B), abstracting all complexities pertaining to connecting and synchronizing several heterogeneous 

components in a cycle-locked deterministic simulation, requiring substantial expertise across various domains.  

To create the SDV-based digital twin, we used the DTDL depicted in Figure 3 to define three ports with 

appropriate gateway types. This included configuring the ports by specifying their signals and directions and 

setting up data exchange based on the protocol used, which in our case is the CAN protocol.  

Figure 4 shows the digital twin components and their connections. The used digital twin components are i) 

Simcenter Prescan: A scenario simulator used for high-fidelity sensor modelling in realistic traffic scenarios to 



 

4 

 

assess the behaviour of ‘smart cars’ under different hypothetical scenarios, conditions, and unexpected disruptions 

[11]. ii) Simcenter Amesim SimRod FMU: A model for representing the mechanical dynamics of the vehicle 

operating in the scenario simulator [12]. iii) SDV client: This client deploys an Adaptive Cruise Control algorithm 

(ACC).  

 

 
 Figure 3. Digital Twin Description Language for SDV-based digital twin. 

 
 

 
Figure 4. The comprehensive SDV-based digital twin and its automation flow. 

To validate the control algorithm, the vehicle operating in the scenario simulator is equipped with a speed 

sensor and a proximity sensor to provide the necessary data to the ACC client. The ACC client performs 

processing to determine the appropriate brake and throttle values needed to maintain a safe distance when the 

vehicle approaches its target. 

 
Table 1: The average time taken to execute packet processing per each client in the SIL case. 

Time of C++ Client (ms) Time of Vehicle Interface (ms) Time of Prescan Client (ms) 

8.6 1.3 49.5 
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A. SDV software implementation (SIL): The ACC Control algorithm was written in a C++ high-level language. 

This client is connected through an appropriate gateway featuring a C++ interface, highlighted by the yellow 

rectangle in Figure 4. This interface was created using its corresponding DTDL language, also marked by a 

yellow rectangle in Figure 3. By going through the creation steps, the digital twin is successfully generated 

and ready to run the simulation through the framework’s digital twin simulator, as depicted in Figure 5.  

Table 1 summarizes the average time taken to receive a packet, process the logic, and send back the result 

for each client connected to the framework over a total simulation time of 40 seconds. The results indicate that 

the bottleneck exists in the Prescan simulator, as it requires more processing time than the other clients. 

 

 

 

 
 Figure 5. X-Term Windows show Digital Twin Simulation Control and Digital Twin clients exchanging signals through the CAN 

backplane, along with Prescan Viewer. 

B. Deploying to Pre-silicon Platforms: The ACC algorithm is then seamlessly deployed to a proFPGA Quad 

motherboard through a simple modification in the Digital Twin Build Commands written in DTDL, 

highlighted by a purple rectangle in Figure 3 and reflected in its corresponding gateway in Figure 4.  Notably, 

the connections of the other clients remain unchanged, with modifications made only to the part related to the 

ACC client, as shown in Figures 3 and 4. This approach significantly reduces the time required to transfer the 

SDV algorithm from high-level design to deployment on the pre-silicon platform.  

 Table 2 provides a summary of the average duration needed to receive a packet, execute the logic, and 

return the result for each client connected to the framework over a 95-second simulation period. In the case of 

running SDV on the edge, the simulation duration is extended due to network latency, as each client resides on a 

different host. The simulation step for both experiments (A) and (B) is 0.00085 seconds, as defined by the user in 

DTDL. This means the simulation progresses by 0.00085 seconds in each step, ensuring that all components 

complete their processing. This simulation step is acceptable for the SimRod FMU component, as it does not 

perform calculations in our case. However, the simulation step could be increased to accommodate the slowest 

component in the system. 

 

Table 2: The average time taken to execute packet processing per each client, when verification of the SDV algorithm is moved to run on 
edge. 

Time of SDV on Edge (ms) Time of Vehicle Interface (ms) Time of Prescan Client (ms) 

0.23 4.4 75.4 

 

 Table 3 shows the statistical results of the ACC client on proFPGA. The DUT (RISC-V) is moderately 

complex with a significant amount of logic and storage elements utilized and reasonable hardware time taken with 

respect to the total time simulation. The hardware time is calculated by multiplying the number of clock cycles 

taken to run the simulation by the duration of one clock cycle. It is important to note that the number of clock 

cycles is relatively high in the simulation, even though no packet processing occurs during this time. Therefore, 



 

6 

 

hardware time is not an accurate indicator of the program's performance on the edge. Instead, we had to analyze 

the time taken for processing a single packet for each client as illustrated in Table 2. The software time is the total 

time the software clients take to execute all needed transactions during the whole running scenario of the SDV 

case study. The communication time refers to the duration required for interactions between the software and 

hardware components. In our case, the frequency is limited to 20 MHz and cannot exceed this frequency due to 

the constraints of the Co-model channel, which is used for communication between the SW and HW DUT. 

Table 3. Statistical results of running SDV algorithm on edge ECU (proFPGA). 

Capacity No. of FPGAs Hardware time 

(sec) 

Software Time 

(sec) 

Communication Time 

(sec)    

Frequency 

(MHz) 

LUTs:   69684    

Registers: 50565    

RPMs: 21  
RPDs: 8 

 

1 

 

62.7 

 

188.2 

 

9.6 

 

20  

 

Through the demonstrated use case, we have presented the compositional simulation framework’s 

versatility and robustness for testing SDVs by seamlessly integrating various components and deploying high-

level software to Pre-Silicon platforms (proFPGA).  

IV. CONCLUSION 

  Our compositional simulation interconnect acts as a versatile and scalable platform for SDV validation, 

by its agility in integrating various models and simulators seamlessly through an automated flow. It provides a 

comprehensive ecosystem for testing the safety and efficacy of automotive applications. The provided use case 

and results provide a practical application of the framework, while the performance metrics could be assessed on 

different platforms to ensure optimal configuration prior to ECU fabrication.  In our future work, we will extend 

our study to include the implementation of SDV algorithms on Virtualized SoC Platforms on the cloud with 

extended digital twin simulation capabilities. 
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