
Maximizing Verification Productivity
Using UVM and Dynamic Test Loading

Masayuki Masuda
Renesas Electronics Corporation

Table of Contents
1. Background: Introductions and Benefits of UVM and DTL
2. Challenges: Breaking Down UVM and DTL barriers
3. Solutions: Proposed UVM and DTL Architecture
4. Results
5. Conclusion
l References
l Abbreviations
l Questions

1. Background

Background
Verification engineers involved in debugging tests are always interested in improving verification
productivity. Some reports show that the median percentage of IC/ASIC project time spent in
verification is 50-60% [1].
What means are effective to achieve this?
l Universal Verification Methodology (UVM) enables verification reusability and interoperability

within companies and throughout the electronics industry.
l Dynamic Test Loading (DTL) including Save/Restore (S/R), which is an EDA technology supported

by major HDL simulators, reduces compile and simulation run time.

The introductions and benefits of UVM and DTL in terms of verification productivity are discussed
below.

Introduction of UVM (1/3)
UVM specifies the class architecture of testbenches (TBs) and test scenarios (hereinafter simply tests).
The tests consist of Test and Sequence (Seq) classes*1 and have the following roles.

TB Tests
Base test

Top env

DUT

Clock I/F Reset I/F APB I/F AHB I/F AXI I/F

AHB envAPB envReset envClock env

Top sequencer

AXI env
AgentAgentAgentAgent Agent

TestTestTest
Extend

TestTestSeq

Configurations of TB:
- Number of Agents
- Type of each Agent
- Property settings of

each class
- Override settings
- Callback settings,

etc.

Stimulus generation:
- Sequence and transaction execution
- Register access, etc.

*1 Classes are shown in bold.

Introduction of UVM (2/3)
UVM offers optimization of the class structure using Object-Oriented programming (OOP) and
design patterns:
l Faster test development TAT by reducing code size

- Share a common part of the classes as a base (or super, parent) class
- Implement only unique parts of the classes as derived (or sub, child) classes
- Reconfigure the parts of the classes

Seq

Seq Seq SeqSeq

The inheritance relationships can be extended any number of times.

Design Patterns:
- Configuration DB
- Factory Override

OOP:
- Inheritance
- Polymorphism

ExtendExtend

Introduction of UVM (3/3)
UVM also offers run-time test selection using the built-in Command Line Processor (CLP):
l Faster regression TAT by reducing compile time

- Test (resp. Seq) can be specified via the +UVM_TESTNAME (resp. +uvm_set_default_sequence)
- No recompilation occurs in regression

Run Nth testReduce compile time

Run 1st testCompile DUT, TB, and tests1st

Compile and run time using UVM

Nth

Progress of
regression

However, if there are any updates to the tests, the recompilation occurs.

+uvm_set_default_sequence=<Seqr>,<Phase>,Seq1

+uvm_set_default_sequence=<Seqr>,<Phase>,SeqN

Benefits of UVM
Benefit Test development *1 Regression *2

1) Reduction in code size N/A
2) Reduction in compile time N/A
3) Reduction in simulation run time N/A N/A

Env. dev. Test development *1

Regression *2

2) Reduction in compile time

1) Reduction in code size

Verification process

*1 A phase in which tests are updated.
*2 A phase in which no tests are updated.

Verification Issues
Benefit Test development *1 Regression *2

1) Reduction in code size N/A
2) Reduction in compile time N/A (#2)
3) Reduction in simulation run time N/A (#3) N/A (#3)

Env. dev. Test development *1

Regression *2

2) Reduction in compile time

Verification issues
that cannot be solved by UVM alone1) Reduction in code size

Verification process

*1 A phase in which tests are updated.
*2 A phase in which no tests are updated.

Introduction of DTL (1/3)
DTL enables dynamically loading the tests at the run-time. This implies that the tests, which are DTL
targets, shall be packaged and compiled separately from the DUT and TB.

Package for TB
Base test

Top env

DUT

Clock I/F Reset I/F APB I/F AHB I/F AXI I/F

AHB envAPB envReset envClock env

Top sequencer

AXI env
AgentAgentAgentAgent Agent

Extend

Import
Package for

tests
TestTestTest

TestTestSeq
Separate

DTL targets:
- Separately packaging
- Separately compiling

Introduction of DTL (2/3)
DTL offers a solution for the verification issue #2:
l Faster test development TAT by reducing compile time

- After compiling the DUT and TB once, compiles and loads only the tests
- No recompilation of entire DUT and TB for each test

Run Nth test*1Reduce compile time

Run 1st test*1Compile DUT and TB1st

Compile and run time using DTL
*1 Compile and dynamically load tests

Nth

Progress
of test dev. Update testsDynamically load tests

Introduction of DTL (3/3)
DTL also offers a solution for the verification issue #3:
l Faster test development and regression TAT by reducing simulation run time

- Dynamically loads the tests with S/R
- No repetition of the common part (e.g., reset, initialization, link training, etc.) for each test

1st

Compile and run time using DTL with S/R
*1 Compile and dynamically load tests, *2 Save the simulation state, *3 Restore the simulation state

Update tests

Run 1st test*3*1Run common part *2Compile DUT and TB

Nth Run Nth test*3*1Reduce run timeReduce compile time

Progress
of test dev. Dynamically load tests

Benefits of DTL

Env. dev. Test development *1

Regression *2

2) Reduction in compile time

Benefit Test development *1 Regression *2
1) Reduction in code size N/A
2) Reduction in compile time
3) Reduction in simulation run time

2) Reduction in compile time 3) Reduction in simulation run time1) Reduction in code size

Verification process

*1 A phase in which tests are updated.
*2 A phase in which no tests are updated.

2. Challenges

Barriers to UVM and DTL Deployment
UVM and DTL are highly effective means of improving verification productivity as discussed above.
However, only a few engineers can take advantage of them for the following reasons:
l Need to understand both UVM and DTL in depth

- They are based on OOP and design patterns but are poorly guided.
l Difficult to share one practice with other cases

- They have many options on how to use and are not aligned among EDA vendors.

In fact, the past DVCon tutorial have pointed out such difficulties of UVM [2].

Challenges
What are needed to break down the barriers and maximize verification productivity?
l Simplified and standardized architecture for applying UVM and DTL

- It shall offer command lines consistent with or without the use of S/R. (Today’s focus)
- It shall be simulator independent.

l Effective infrastructure to spread UVM and DTL

Our challenges are to establish them and to demonstrate their applicability and capability.

3. Solutions

UVM and DTL Architecture (1/3)
The proposed architecture of UVM classes and packages for DTL shall follow.

Static base test package Static test
packageBase test

Top env

AHB envAPB envReset envClock env

Top sequencer

AXI env
AgentAgentAgentAgent Agent

TestTestTest
Extend

TestTestSeq 0

Import
Dynamic test

package

TestTestSeq N

Separate

Extend

Import

Test is shared for both Seq 0 and Seq NBase test handles S/R with the additional CLP

Seq N implements the test contents for each test
Seq 0 implements the common part of the tests

Classes below the base test are configurable
as discussed in the introduction of UVM

UVM and DTL Architecture (2/3)
The following class structure is intended to be consistent with or without the use of S/R:
l Test is shared for both Seq 0 and Seq N. Also, it doesn’t have any default sequence settings and

sequence executions. Instead, the default sequence shall be specified via the CLP.
l Seq 0 shall implement the common part to be run at reset_phase.
l Seq N shall extend Seq 0 and implement the test contents to be run at main_phase.

class SeqN extends Seq0;
virtual task body();
super.body();
//Test Contents

endtask : body
endclass : SeqN

class Seq0 extends uvm_sequence;
virtual task body();
if ($test$plusargs("RESTORE")) return;
super.body();
//Common Part

endtask : body
endclass : Seq0 Seq 0 followed by Seq N

When restoring the simulation, skip the common part

UVM and DTL Architecture (3/3)
UVM has the built-in CLP that handles +uvm_set_default_sequence, but it doesn’t work when
restoring the simulation since the time has already passed to post_reset_phase:
l Base test shall handle +uvm_set_default_sequence with the following CLP in post_reset_phase.

virtual task post_reset_phase(uvm_phase phase);
if ($value$plusargs("SAVE=%s", snapshot)) begin
$save(snapshot);

end
if ($test$plusargs("RESTORE")) begin
if ($value$plusargs

("uvm_set_default_sequence=uvm_test_top.top_env.top_seqr,main_phase,%s", seqname)) begin
$cast(seq, create_object(seqname));
uvm_config_db#(uvm_object_wrapper)::
set(this, "top_env.top_seqr.main_phase", "default_sequence", seq.get_object_type());

end
end

end task : post_reset_phase Set Seq N to the default sequence of main_phase

Additional CLP using $value$plusargs

Command Lines without S/R
The proposed architecture offers the consistent command lines with or without S/R. Also, the
architecture and command lines are simulator independent (confirmed by 2 major HDL simulators):
l Run the 1st or Nth test with Test and Seq N at main_phase

+UVM_TESTNAME=Test +uvm_set_default_sequence=<Seqr>,main_phase,SeqN

1st

Compile and run time using DTL without S/R
*1 Compile and dynamically load tests

Nth Run Nth test*1Reduce compile time

Run 1st test*1Compile DUT and TB
@main_phase

Run Seq N

Command Lines with S/R

1st

Compile and run time using DTL with S/R
*1 Compile and dynamically load tests, *2 Save the simulation state, *3 Restore the simulation state

Run 1st test*3*1Run common part *2Compile DUT and TB

Nth Run Nth test*3*1Reduce run timeReduce compile time

@reset_phase @main_phase

l Run the common part with Test and Seq 0 at reset_phase
+UVM_TESTNAME=Test +uvm_set_default_sequence=<Seqr>,reset_phase,Seq0 +SAVE=<SnapShot>

l Run the 1st or Nth test with Test and Seq N at main_phase
+UVM_TESTNAME=Test +uvm_set_default_sequence=<Seqr>,main_phase,SeqN +RESTORE -r <SnapShot>

Run Seq 0 Run Seq N

Infrastructure
Guidelines for compliance with the architecture and the command lines are essential as the
infrastructure. In addition, the distribution of the base test package including the configurable
testbench and the S/R handler is effective:
l UVM and DTL are expanded rapidly to many design projects.
l The verification engineers of each design project save the cost of introducing them to focus on

debugging the tests.

ExtendExtend

Infrastructure

Design projects

Guidelines

4. Results

Results
The proposed solutions were implemented and applied to 3 designs and various tests where S/R
was available, with the following results:
l The reduction in compile time exceeded 90% across all designs.
l The reduction in run time varied for each test and reached up to 99%.

Compile time Run time
Design Scale w/o DTL w/ DTL Reduction Test Length w/o S/R w/ S/R Reduction

1 Block 00:04:17 00:00:22 92% A Typical 00:03:17 00:01:04 67%
2 Chip 00:12:34 00:00:16 98% B Typical 00:04:30 00:02:42 40%

C Long 00:15:48 00:03:36 77%
3 Block 00:06:41 00:00:16 96% D Very long 15:44:32 00:06:43 99%

E Very long 21:18:27 08:46:18 59%

Contribution to Actual Verification
Reduction of total compile time in test development:
l Design 1-3: Reduction by 92-98% (This is because it can be applied to 100% of tests.)

Reduction of total simulation run time per regression:
l Design 1: Reduction by 200 hours (67%)

(Total run time per regression (300 hours) x Average reduction rate per test (67%) x Applicable tests (100%) = 200 hours)

l Design 2: Reduction by 300 hours (20%)
(Total run time per regression (1500 hours) x Average reduction rate per test (40%) x Applicable tests (50%) = 300 hours)

Reduction of total verification period:
l Design 3: Reduction by 1 month (36%) (Details of the estimation formula are omitted.)

The results demonstrate the applicability and capability of our solutions for maximizing verification
productivity.

5. Conclusion

Conclusion
We established the following architecture and infrastructure:
l Simplified and standardized architecture for applying UVM and DTL
l Effective infrastructure to spread UVM and DTL

The following results demonstrated the applicability and capability of our solutions for maximizing
verification productivity:
l Reduced total compile time in test development by 92-98%
l Reduced total simulation run time per regression by 200 hours (67%) or 300 hours (20%)
l Reduced total verification period by 1 month (36%)

References

References
[1] 2022 Wilson Research Group Functional Verification Study

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-
group-functional-verification-study/

[2] DVCon 2019 Tutorial: IEEE 1800.2 UVM - Changes - Useful UVM Tricks & Techniques
https://accellera.org/images/resources/videos/Tutorial-IEEE-1800-2-Standard-for-UVM-2019.pdf

https://blogs.sw.siemens.com/verificationhorizons/2022/12/12/part-8-the-2022-wilson-research-group-functional-verification-study/
https://accellera.org/images/resources/videos/Tutorial-IEEE-1800-2-Standard-for-UVM-2019.pdf

Abbreviations

Abbreviations
l UVM: Universal Verification Methodology
l DTL : Dynamic Test Loading
l S/R : Save/Restore
l EDA : Electronic Design Automation
l HDL : Hardware Description Language
l DUT : Device (or Design) Under Test
l TB : Testbench
l Seq : Sequence
l OOP : Object-Oriented Programming
l CLP : Command Line Processor

Questions

Questions

