
Hardware/Software co-design and 
co-verification of embedded systems

Mayank Nigam
Nikita Gulliya

1



Agenda
Introduction

● Digital Peripheral Custom IP:
○ Structure and Importance of Registers

● Approach:
○ Methodologies for Co-Design, Verification, 

and Validation
Description

● SystemRDL Format:
○ Register Specifications and Automated 

Generation
● RTL Generation:

○ HDL Code and Register Logic
● Register Map:

○ Address Definitions for Hardware-Software 
Interface

● UVM Code:
○ Verification Environment and Test 

Sequences

● wr_data and rd_data Simulation:
○ Simulation Process and Verification

● C-API and C-Code
○ Hardware-Software Interface and Firmware

● Validation Code in Xilinx SDK Environment
○ Firmware and Test Code Development in 

Xilinx SDK
Application

● Example 1:
○ Reuse of Validated Registers

● Example 2:
○ Receiver Block Diagram and Data Handling

Results
● Efficiency Improvements and Cycle Time 

Reduction
Conclusion

● Generalized Approach and Industry Impact

2



Introduction
● Increasing Complexity: Hardware chip complexity is on the 

rise.
● Initiator-Target Architectures: Chips used as targets, often 

custom peripheral IPs in Printed Circuit Boards for Embedded 
Systems

● Functionality and Registers: Provided in datasheets but 
lack programmer-focused validation.

● Programmer's Perspective:
○ Programmers interface Peripherals and write software 

to manage peripheral pins and internal Registers.
○ Real-world applications require tailored software.

● Importance for Silicon Vendors:
○ Need for a comprehensive approach in design, 

verification, and validation of peripheral IPs.
● Methodologies:

○ This paper presents methodologies for co-design, 
verification, and validation.

○ Demonstrated with detailed examples.
3



Digital Peripheral Custom IP
Two Main Sections:

● Logic Circuits: Designed based on specific functionality.
● Registers: Used for configuration and data exchange.

Registers' Role:
● Configure the IP.
● Send/receive data to/from the initiator and external devices.
● Act as inputs/outputs for internal functional circuits.
● Send data to output pins of the IP.

Programmers' Use:
● Use pin/port status to drive external devices in embedded systems.

Need for Co-Design and Co-Verification:
● Essential before releasing Custom complex IPs.
● Prevents escalation of non-recurring engineering (NRE) costs.
● Reduces failure rates in embedded systems.
● Critical for industries such as automotive, avionics, medical, and communication etc

4



Approach for Hardware-Software Co-Design 
and Co-Verification

Register Management:
● Programmers write data to IP’s registers from the software side.
● Register values must align with expected functionality post-reset or default conditions.
● Correct values ensure IP functionality.

Critical Aspect:
● Accurate writing/reading from correct register after internal Functional behaviour of Custom 

IC through application programs in point of view of Programer
Methodology:

● Prototypes: Created for hardware-software interface.
● Verification & Validation:

○ HDL languages for RTL generation.
○ UVM for verification.
○ Embedded C for validation, independent of processors.

Functionality Testing:
● Tests include lock, shadow, aliasing, TMR, trigger buffer, RW pair, FIFO, counters, etc.
● Application in UART, I2S, GPIO, EEPROM, dual-port RAM, or custom IPs for embedded 

systems.

5



Components for Co-Design and Co-Verification
Four Crucial Components:

1. Register Specification: Defined in RDL format.
2. RTL Generation: Hardware description using HDL languages.
3. Register Map: Header files for register addresses and definitions.
4. Verification Environment:

○ UVM code for verification.
5. Validation Environment:

○ C-API and C-code for testing and validation.

Comprehensive Process: Ensures IP functions correctly within the embedded domain.

6



SystemRDL Format and RTL Generation
SystemRDL Format:

● Purpose: Describes register structures, 
behavior, and constraints.

● Benefits: Automated RTL generation, 
documentation, and software drivers.

● Example Syntax:
addrmap block_name {

reg {
field {

hw=rw;
sw=rw;

} fld[31:0];
regwidth=32;

} reg_name;
};:

RTL Generation:
● Description: Written in HDL (VHDL/Verilog) 

to define circuit logic.
● Example Code

always @(posedge clk) begin
if (!reset_l) begin

reg_name_fld_q <= 32'bx;
end else begin

if (reg_name_fld_in_enb) begin
reg_name_fld_q <= 

reg_name_fld_in;
end else begin

if (reg_name_wr_valid) begin
reg_name_fld_q <= (wr_data 

[31 : 0] & reg_enb [31 : 0]) | 
(reg_name_fld_q & (~reg_enb [31 : 0]));

end
end

end
end

7



Register Map:
Purpose: Defines register addresses for hardware-
software interface.

#define block_name_s_ADDRESS 0x0
#define block_name_reg_name_ADDRESS 0x0
#define BLOCK_NAME_REG_NAME_FLD_OFFSET 0
#define BLOCK_NAME_REG_NAME_FLD_MASK 
0xFFFFFFFF
#define BLOCK_NAME_REG_NAME_FLD_DEFAULT 0

UVM Code:
Purpose: Provides high-level representation of registers for 
verification.

`ifndef CLASS_block_name_reg_name
`define CLASS_block_name_reg_name
class block_name_reg_name extends uvm_reg;

`uvm_object_utils(block_name_reg_name)

rand uvm_reg_field fld;
function new(string name = 

"block_name_reg_name");
super.new(name, 32, 

build_coverage(UVM_NO_COVERAGE));
endfunction
virtual function void build();

this.fld = 
uvm_reg_field::type_id::create("fld");

this.fld.configure(.parent(this), .size(32), 
.lsb_pos(0), .access("RW"), .volatile(0), 
.reset(32'd0));

endfunction
endclass
`endif

8



Simulation of Write and Read Operations
Verification Process:

● Tool Used: Questa-Sim for simulation.
● Objective: Validate write (wr_data) and read (rd_data) operations.

Simulation Details:

● Testbenches: Created to generate various data patterns.
● Write Operations: Data patterns are written to registers.
● Read Operations: Data is read back from registers.
● Checks Performed:

○ Integrity: Ensure data written can be accurately read back.
○ Functionality: Verify correctness of register operations.
○ Sequences and Corner Cases: Ensure all scenarios are handled properly.

9



10



C-API and C-Code:

● Purpose: Facilitates register interaction and validation.

#include "write_read.h"

#include "block_name_seq_name_iss.h"

int block_name_seq_name(int baseAddress) {

int reg_name;

REG_WRITE(BLOCK_NAME_REG_NAME_ADDRESS(baseAddress), 0x12345678);

reg_name = REG_READ(BLOCK_NAME_REG_NAME_ADDRESS(baseAddress));

return 0;

}

11



Validation in Xilinx SDK
● Validation Code Development:

○ Environment: Xilinx Software Development Kit 
(SDK).

○ Activities:
■ Writing Firmware: Develop firmware for 

custom IPs.
■ Test Code: Create test code to verify 

functionality.
○ Tools and Libraries:

■ Provided by Xilinx SDK.
■ Facilitate development and debugging of 

software.
○ Objective:

■ Ensure custom peripherals operate 
correctly and efficiently within the target 
embedded system.

12



Examples of Register Validation
SHADOW Register:

● Vivado HW Design:
○ SHADOW REGISTER IP with Zynq processor.

● SDK Sequences:
○ C-Program validating SHADOW Register.

13



LOCK Register:

● Vivado HW Design:
○ LOCK REGISTER IP with Zynq processor.

● Software SDK:
○ C-Headers for LOCK Register validation.
○ C-Program validating LOCK Register.

14



Trigger Buffer Register:

● Vivado HW Design:
○ TRIGGER BUFFER REGISTER IP with Zynq processor.

● SDK Sequences:
○ C-Program validating TRIGGER BUFFER Register.

15



● Counters:
○ Vivado Design:

■ COUNTER IP with Zynq processor.
○ Software Embedded C Code:

■ C-Program validating COUNTER.

16



● Additional Registers:
○ Validation of Interrupt, FIFO, and Read/Write Registers.
○ Utilizes SystemRDL with UDP for design and Vivado for verification.

17



Applications of Validated Registers
Example 1: Reuse of Validated 
Registers

● Process:
○ Validated registers are directly 

connected to functional logic.
○ Registers are reusable across 

different custom IPs.
○ Only functional blocks within 

the IP need testing.
○ Ensures minimal re-verification 

and faster time to market.
● Advantage: Streamlined design and 

verification/validation process.

18



Example 2: Receiver Block Diagram
● Description:

○ Packet Structure: Start-address-command-data-stop sequences.
○ Functionality:

■ Sequence detector identifies start conditions.
■ Data passed through multiplexer.
■ Counter control mechanism stores data in 8-bit segments.
■ Counter down-counts data length.
■ Programmer sets baud rate and configures registers.

○ Component Reuse: Verified registers and counters are reused, eliminating need for further 
verification.

19



Efficiency and Effectiveness of Co-Design and Co-
Verification
Efficiency Improvement:

● Cycle Time Reduction: Up to 30%.
● Advantages:

○ Faster compared to traditional methodologies.
○ More cost-effective and compact.

Enhanced Productivity:

● Simultaneous result generation during testing.
● Improved reliability in both verification and validation environments.

20



Transformative Impact on Embedded 
Systems

Generalized Approach:

● Applies to any custom peripheral IP.

Benefits:

● Addresses embedded system challenges effectively.
● Integrates hardware and software co-design and co-verification.

Industry Impact:

● Sets a new standard for efficiency and effectiveness in development and deployment.
● Provides a transformative impact on the industry.

21



Questions

22


