DESIGN AND V 1ICATION™

DVLUOIN

CONFERENCE AND EXHIBITION

Hardware/Software co-design and
co-verification of embedded systems

Mayank Nigam
Nikita Gulliya

SYSTEMS INITIATIVE

Agenda

Introduction e wr_data and rd_data Simulation:

o Digital Peripheral Custom IP: _ o Simulation Process and Verification
o Structure and Importance of Registers e C-APl and C-Code

e Approach: o Hardware-Software Interface and Firmware

o Methodologies for Co-Design, Verification, e Validation Code in Xilinx SDK Environment

o and Validation o Firmware and Test Code Development in
Description Xilinx SDK

e SystemRDL Format: Application
o Register Specifications and Automated F:p |cEax|aomple 1:

Genera.tion o Reuse of Validated Registers
e RTL Generation: e Example 2:

° HDL Code and Register Logic o Receiver Block Diagram and Data Handling
e Register Map:

Results
o Address Definitions for Hardware-Software e Efficiency Improvements and Cycle Time
Interface Reduction
e UVM Code:

Conclusion
e Generalized Approach and Industry Impact

o Verification Environment and Test
Sequences

Introduction

e Increasing Complexity: Hardware chip complexity is on the
rise.

e Initiator-Target Architectures: Chips used as targets, often
custom peripheral IPs in Printed Circuit Boards for Embedded
Systems

e Functionality and Registers: Provided in datasheets but
lack programmer-focused validation.

e Programmer's Perspective:

o Programmers interface Peripherals and write software

to manage peripheral pins and internal Registers. —
o Real-world a_p.pllcatlons require tailored software. B ————. B
e Importance for Silicon Vendors: e b s e

o Need for a comprehensive approach in design,
verification, and validation of peripheral IPs.
e Methodologies:
o This paper presents methodologies for co-design,
verification, and validation.

Digital Peripheral Custom |P

Two Main Sections:
e Logic Circuits: Designed based on specific functionality.
e Registers: Used for configuration and data exchange.
Registers’ Role:
e Configure the IP.
e Send/receive data to/from the initiator and external devices.
e Act as inputs/outputs for internal functional circuits.
e Send data to output pins of the IP.
Programmers' Use:
e Use pin/port status to drive external devices in embedded systems.
Need for Co-Design and Co-Verification:
e Essential before releasing Custom complex IPs.
e Prevents escalation of non-recurring engineering (NRE) costs.
e Reduces failure rates in embedded systems.
e Critical for industries such as automotive, avionics, medical, and communication etc

Approach for Hardware-Software Co-Design
and Co-Verification

Register Management:
e Programmers write data to IP’s registers from the software side.
e Register values must align with expected functionality post-reset or default conditions.
e Correct values ensure IP functionality.
Critical Aspect:
e Accurate writing/reading from correct register after internal Functional behaviour of Custom
IC through application programs in point of view of Programer
Methodology:
e Prototypes: Created for hardware-software interface.
e Verification & Validation:
o HDL languages for RTL generation.
o UVM for verification.
o Embedded C for validation, independent of processors.
Functionality Testing:
e Tests include lock, shadow, aliasing, TMR, trigger buffer, RW pair, FIFO, counters, etc.
e Application in UART, I12S, GPIO, EEPROM, dual-port RAM, or custom IPs for embedded
systems.

Components for Co-Design and Co-Verification

Four Crucial Components:

Register Specification: Defined in RDL format.
RTL Generation: Hardware description using HDL languages.
Register Map: Header files for register addresses and definitions.
Verification Environment:

o UVM code for verification.
Validation Environment:

o C-API and C-code for testing and validation.

hoODdb-=

o

Comprehensive Process: Ensures IP functions correctly within the embedded domain.

SystemRDL Format and RTL Generation

SystemRDL Format:
e Purpose: Describes register structures,
behavior, and constraints.
e Benefits: Automated RTL generation,
documentation, and software drivers.

e Example Syntax:
addrmap block name {

reg {
field {
hw=rw;
SW=Yw;

} £1d[31:0];
regwidth=32;
} reg name;

bioe

C o

RTL Generation:
e Description: Written in HDL (VHDL/Verilog)
to define circuit logic.

e Example Code
always @ (posedge clk) begin
1f (lreset 1) begin
reg name fld g <= 32'bx;
end else begin
1if (reg name fld in enb) begin
reg name fld g <=
reg name_ fld in;
end else begin
if (reg name wr valid) begin
reg name fld g <= (wr data
[31 : 0] & reg enb [31 : 0]) |
(reg name fld g & (~reg enb [31 : 0]));
end
end
end
end

UVM Code:

Register Map:] : — , :
Purpose: Defines register addresses for har dwareIj’urpose. Provides high-level representation of registers for

- verification.
software interface.

"ifndef CLASS block name reg name

"define CLASS block name reg name

class block name reg name extends uvm reg;
‘uvm object utils(block name reg name)

#define block name s ADDRESS 0x0

#define block name reg name ADDRESS 0x0
#define BLOCK NAME REG NAME FLD OFFSET 0
#define BLOCK NAME REG NAME FLD MASK
O0xFFFFFFFF - -

fdefine BLOCK NAME REG NAME FLD DEFAULT 0 rand uvm_reg_field fld;

function new(string name =
"block name reg name");
super.new (name, 32,
build coverage (UVM NO COVERAGE)) ;
endfunction
virtual function void build()
this.fld =
uvm _reg field::type id::create("fld");
this.fld.configure(.parent (this), .size(32),
.1sb pos(0), .access("RW"), .volatile(O),
.reset (32'd0)) ;
endfunction
endclass
“endif

DOVELDN
JAPAN

Simulation of Write and Read Operations

Verification Process:

e Tool Used: Questa-Sim for simulation.
e Objective: Validate write (wr_data) and read (rd_data) operations.

Simulation Details:

Testbenches: Created to generate various data patterns.
Write Operations: Data patterns are written to registers.
Read Operations: Data is read back from registers.
Checks Performed:
o Integrity: Ensure data written can be accurately read back.
o Functionality: Verify correctness of register operations.
o Sequences and Corner Cases: Ensure all scenarios are handled properly.

Yow Add Fomat Tooks Boogmarks Wwdow Helo

N-sl & B0 0 - S TERN -t e
- gl B L . . - 4. B | Soarch

C-API and C-Code:

e Purpose: Facilitates register interaction and validation.

#include "write read.h"
#include "block name seq name iss.h"
int block name seq name (int baseAddress) {
int reg name;
REG WRITE (BLOCK NAME REG NAME ADDRESS (baseAddress), 0x12345678);

reg name = REG_READ (BLOCK NAME REG NAME ADDRESS (baseAddress));

return 0;

DOVELDN
JAPAN

Validation in Xilinx SDK

e Validation Code Development:
o Environment: Xilinx Software Development Kit

(SDK). fincrugs placzorn.n”
o Activities: i,'-—F-YL_r' ame ADDRESS 0xO
m Writing Firmware: Develop firmware for famsine AR Dxiizioons
custom IPs. =T
m Test Code: Create test code to verify SUE forit iinde mama 200 noms REDGESRIAINE. —
functionality_ u32 valuel- Xil In32(olock name rag nama ADDRISS+ADDR)
o Tools and Libraries: ey e
m Provided by Xilinx SDK. L
m Facilitate development and debugging of
software.

o Objective:
m Ensure custom peripherals operate
correctly and efficiently within the target
embedded system.

Examples of Register Validation

SHADOW Register:

e Vivado HW Design:
o SHADOW REGISTER IP with Zynqg processor.

e SDK Sequences:
A C_Pranram validatina SHANN\A/ Register_

Ondem ¥

- o Eamcccl

LOCK Register:

e Vivado HW Design:
o LOCK REGISTER IP with Zynq processor.
e Software SDK:
o C-Headers for LOCK Register validation.
o C-Program validating LOCK Register.

TULLALLLLLAL

]

Trigger Buffer Register:

e Vivado HW Design:
o TRIGGER BUFFER REGISTER IP with Zynq processor.
e SDK Sequences:
o C-Program validating TRIGGER BUFFER Register.
YT - (1 isil ¥ @O

Qustom:

G, 7 —-— o 940> nxe ¥ | »

e Counters:
o Vivado Design:

m COUNTER IP with Zynq processor.
o Software Embedded C Code:

m C-Program validating COUNTER.

& agimcmsns v o = EERRRSs - om0 - e Y T THO
i ¢ - N
Fae (O Swce GFmIN Mivgte MY Fa Ao > ol
Custons IP
— A = L IR N T wAe
- i . “ i
~—
{ C Byrw W 1 Pediwands - -
~ -
- - .]
oy e | PR @y
| 8 -
Bamaet | LN et 8«
: - >l - "y ’ .
- g o
T - -— ———
$ E:_-... - s wiapin e -~ .
* - o I .,
—— $ S
Doyt .
D~ — e ' 4 - - - 1 s - - "0 -~ vy - ' 2
S " &

A Laow pratu]

e Additional Registers:
o Validation of Interrupt, FIFO, and Read/Write Registers.
o Utilizes SystemRDL with UDP for design and Vivado for verification.

DOVELDN
JAPAN

Applications of Validated Registers

Example 1: Reuse of Validated
Registers

e Process:
o Validated registers are directly
connected to functional logic.
o Registers are reusable across
different custom IPs.
o Only functional blocks within
the IP need testing.
o Ensures minimal re-verification
and faster time to market.
e Advantage: Streamlined design and
verification/validation process.

BUS signals
control, Data | /P

Control logic

and Timing purpase

BUS signals
Status, Data O/P

TX-RX Operation =:

Register With LOCK ACCESS

Counter
Operation

I Trigger Buffer Register.

Interrupt Register

RO/WR
Register

I FIFD Register

EFunalonul Legic

]

Sacurity Application

:l> HW Signals O/p

| et Controlled Buffers

Programmabie interrupt

e Controller

- Synchronization
I% HW Signals | /P

CUSTOM PERIPHERAL

DOVELDN

Example 2: Receiver Block Diagram
e Description:

o Packet Structure: Start-address-command-data-stop sequences.

o Functionality:
m Sequence detector identifies start conditions.
m Data passed through multiplexer.
m Counter control mechanism stores data in 8-bit segments.
m Counter down-counts data length.
m Programmer sets baud rate and configures registers.

o Component Reuse: Verified registers and counters are reused, eliminating need for further

verification. — -

Register | 0 ﬁ

‘ Addrass Roglster i
Configure Serlalto 1 ’ os Data Ropistor

i . Paralied :
Serial Data Comvarter || Command Reg ﬁ s
] Largts Ragistar Coumter for
| store data
respect length

Sequence Countar '
Detecior control

A Simple Block Diagram for Reclever which takes data and store data according to length of data

Efficiency and Effectiveness of Co-Design and Co-
Verification

Efficiency Improvement:

e Cycle Time Reduction: Up to 30%.
e Advantages:
o Faster compared to traditional methodologies.

o More cost-effective and compact.

Enhanced Productivity:

e Simultaneous result generation during testing.
e Improved reliability in both verification and validation environments.

Transformative Impact on Embedded
Systems

Generalized Approach:
e Applies to any custom peripheral IP.
Benefits:

e Addresses embedded system challenges effectively.
e Integrates hardware and software co-design and co-verification.

Industry Impact:

e Sets a new standard for efficiency and effectiveness in development and deployment.
e Provides a transformative impact on the industry.

Questions

