2024

DESIGN AND VERIFICATION™

DVLCOIN

CONFERENCE AND EXHIBITION

Hardware/Software co-design and co-verification of

embedded systems
Mayank Nigam, Agnisys Technology Pvt. Ltd, India, mayank@agnisys.com
Nikita Gulliya, Agnisys Technology Pvt. Ltd, India, nikita@agnisys.com

Abstract— As hardware chip complexity continues to increase, these chips are frequently utilized
as targets in Initiator-Target Architectures, where the targets are commonly referred to as custom
peripheral IPs. The initiator can write to and read from these peripherals. While silicon companies
provide functionality and register information in their datasheets, they often overlook validation from
the programmer's perspective—the ones who develop software to control these IPs. In embedded
systems, programmers write software into the processor’s program memory to interface with external
devices and manage peripheral hardware pins, tailored to real-world applications. Therefore, it is
crucial for silicon vendors to adopt a comprehensive approach to design, verify, and validate these
peripheral IPs. This paper presents methodologies for the co-design, verification, and validation of
hardware and software. Entire process will be demonstrated through detailed examples.

Keywords—RAL,NRE,VIVADO ,SDK,RTL,UDP

. EI D D D I,-,l I:I-I:I--ulz.-:'::H-E'-"5
MICROPROCESSOR |- i il el bl i e fe———
T NS — P8 WiRINe
- IS v e
.|| 1:.- l ; KEY PAD
sl 1€ | Funcriona
R LOGIC
TIMER Ic |
- CUSTOM PEHIPHERAL
POWER I/P |.|
LCD DISPLAY B SEVEN SEGMENT
o= AB[HE

TYPICAL BLOCK DIAGRAM FOR EMBEDDED SYSTEMS = OTHER AREAS FOR
IN PCB DESIGN ANALOG COMPONENT

I. INTRODUCTION

A digital peripheral custom IP is typically divided into two main sections: the logic circuits, which
are designed based on specific functionality, and the registers, which are used for configuring the IP,
as well as sending and receiving data to and from the initiator and external devices. These registers
also act as inputs for the internal functional circuits that send data to the output pins of the IP.
Programmers use the status of these pins/ports to drive external devices in the embedded world.

mailto:mayank@agnisys.com

Therefore, hardware/software co-design and co-verification are essential before complex IPs are
released to the market. Addressing this need in a timely manner is crucial; otherwise, the
non-recurring engineering (NRE) costs for complex peripherals could escalate, and the failure rate of
embedded systems could increase, posing risks to industries such as automotive, avionics, medical,
and communication.

A. Approach

Our approach allows programmers to write data to the IP’s registers from the software side. These
register values must match the expected values based on functionality at any given time after reset or
default conditions. Correct register values ensure that IPs are functioning correctly. In embedded
systems, these registers are used in application programs, so it is crucial to write to and read the
correct values from the correct register address locations. We address this problem through the
hardware-software interface by creating prototypes and verifying and validating them. We use HDL
languages for RTL generation, UVM for verification, and Embedded C for validation, independent of
any processor, to test simple and complex registers for functionality such as lock, shadow, aliasing,
TMR, trigger buffer, RW pair, FIFO, counters, etc. These validated simple and complex peripheral
registers can be used in UART, I12S, GPIO, EEPROM, dual port RAM, or any custom IPs for
embedded applications.

B. Detailed Work

For the hardware/software co-design and co-verification approach, we need four crucial components:

Register specification in RDL format

RTL generation

Register map (header files)

UVM code for the verification environment
C-API and C-code for the validation environment

A e

These components undergo a comprehensive process to ensure the IP functions correctly within the
embedded domain.

C. Description:

1. SystemRDL Format: Specifications of registers can be written in SystemRDL format.
SystemRDL (Register Description Language) is a language specifically designed to describe
the registers in digital systems, capturing the structure, behavior, and constraints of registers
in a formalized way. This format facilitates automated generation of RTL, documentation,
and software drivers, ensuring consistency and reducing manual errors.

addrmap block name{
reg {
field {
hw=rw;
SW=Yw;
} £1d[31:0];
regwidth=32;
} reg name ;

}i

2. RTL Generation: The RTL (Register Transfer Level) or hardware design can be written in any
HDL (Hardware Description Language), such as VHDL or Verilog. This step involves defining the
detailed logic and structure of the digital circuits based on the specifications, ensuring that the design
meets the required functionality and performance criteria.

- part of code——--------—-—————————-—
always @ (posedge clk) begin
if (!reset 1)

begin
reg name_ fld g <= 32'bx;
end
else
begin
if (reg name fld in enb) //f1d : HW Write
begin
reg name fld g <= reg name fld in;
end
else
begin
if (reg name wr valid) //FLD : SW Write
begin

reg name fld g <= (wr_data [31 : 0] & reg enb [31 : 0]) |
(reg name fld g & (~reg enb [31 : 0]));
end
end
end
end //end always

———————————— part of code———------"""""""-———

3. Register Map: The register map is essential for the hardware-software interface. It defines the
address locations of the registers, facilitating the software's ability to correctly access and
manipulate the hardware registers. This map ensures seamless communication between the
software and the hardware components.

——————— = part of code—---—-----"""""""""""""""""""""""°--—-
#define block name s ADDRESS 0x0

#define block name reg name ADDRESS 0x0

#define BLOCK NAME REG NAME FLD OFFSET 0

#define BLOCK NAME REG NAME FLD MASK OxFFFFFFFF

3

#define BLOCK _NAME REG _NAME FLD INV_MASK 0x0

#define BLOCK NAME REG NAME FLD VALUE MASK Ox7FFFFFFF
#define BLOCK NAME REG NAME FLD INV_VALUE MASK 0x80000000
#define BLOCK _NAME REG NAME FLD SIZE 32

#define BLOCK NAME REG NAME FLD DEFAULT 0

#endif /* BLOCK NAME REGS H */

/* end */

4. UVM Code: UVM (Universal Verification Methodology) code can be written in an
environment consisting of the Register Abstraction Layer (RAL) and test sequences. The
RAL provides an abstract, high-level representation of the registers, facilitating the
verification of register operations. Test sequences are then used to simulate various scenarios
and validate that the registers and the overall system function correctly under different
conditions.

‘ifndef CLASS block name reg name

"define CLASS block name reg name

class block name reg name extends uvm reg;
‘uvm_object utils(block name reg name)

rand uvm_reg field f1d;/**/

// Function : new

function new(string name = "block name reg name");
super.new (name, 32, build coverage (UVM NO COVERAGE)) ;
add coverage (build coverage (UVM NO COVERAGE)) ;

endfunction

// Function : build
virtual function void build();
this.fld = uvm reg field::type id::create("fl1d");
this.fld.configure (.parent (this), .size(32), .lsb pos(0), .access("RW"),
.volatile(0), .reset(32'd0), .has reset(l), .is rand(1l),
.individually accessible(0));
endfunction
endclass
‘endif

task body;
uvm reg data t reg name ;

if (!$cast (rm, model)) begin
‘uvm_error ("RegModel : block name block","cannot cast an object of type
uvm_reg sequence to rm");
end

if (rm == null) Dbegin
‘uvm_error ("block name block", "No register model specified to run
sequence on, you should specify regmodel by using property 'uvm.regmodel' in the
sequence")
return;
end

rm.reg name.write (status, 'h012345678, .parent(this));
rm.reg name.read(status, reg name, .parent(this));

varl=reg name;

endtask: body

5. wr_data and rd_data Simulation: Verification of the sequences created above can be
performed in Questa-Sim by simulating the write (wr_data) and read (rd_data) operations.
This involves creating testbenches that generate various data patterns to be written to the
registers and subsequently reading back the data to ensure correctness. The simulation checks
the integrity and functionality of the registers, validating that data written to the registers can
be accurately read back, and that all sequences and corner cases are handled properly.

| Wave
E Edit Yew pdd Format Tools Bookmarks Window Help
™ Wave - Default -

H-gWl & RO | 0- 4 &2 08| BE- 4 e= | 5F] 100w 50 EH EREE et ko8-8
Rl g [, e e B | L e £ 3k €. B | Seanch: v E 8| GG @8R

6. C-API and C-Code for the Validation Environment: The C-APIs are macros designed to write to
and read from the registers, while the C-code constitutes the firmware for custom IPs. This firmware
is processor-independent, ensuring that it can be used across various embedded systems. These
components facilitate the validation of the hardware by providing a straightforward interface for
software to interact with the registers, confirming their correct operation in different scenarios.

C-API (Hardware-Software Interface)

#define IDS_MACROS_DEFINE_H_

#define REG_READ(ADDR)

#define REG_WRITE(ADDR,WDATA)

#define FIELD_READ(ADDR,MASK,OFFSET)
#define FIELD_WRITE[ADDR,WDATA,MASK, OFFSET]]

C-Code

#include "write read.h"

#include "block name seq name iss.h"

int block name seq name (int baseAddress) {

int reg name;

int varl = 0 ;

REG_WRITE (BLOCK NAME REG NAME ADDRESS (baseAddress),0x12345678) ;
reg name = REG_READ (BLOCK NAME REG NAME ADDRESS (baseAddress));
varl = reg name;

return 0;

}

7. Validation Code in Xilinx SDK Environment: The validation code is developed within the Xilinx
Software Development Kit (SDK) environment. This involves writing firmware and test code to
verify the functionality of the custom IPs. The Xilinx SDK provides tools and libraries that facilitate
the development and debugging of software for Xilinx devices, ensuring that the custom peripherals
operate correctly and efficiently within the target embedded system.

#include <stdio.h>
#include "platform.h"
#include "xil printf.h"
#define block name reg name ADDRESS 0x0
$define ADDR Ox43cO0000
int main{}
-
init platform();
¥il Ouc32 (block name reg name LDDRESS+ADDR, 0x12345673) 7
u32 valuel= Xil In3d(klock name reg name ADDRESS+ADDE) ;
cleanup platform();
retaorn CO;

D. Examples

With the use of UDP (User Defined Property) in SystemRDL, custom properties can be added to the
register definitions for special registers. This enables the design of specialized registers tailored to
specific needs. Once defined, the code can be implemented and verified in Vivado. This approach
allows for precise customization and thorough verification of IP components, ensuring they meet the
desired specifications and perform reliably in the final application

SHADOW Register

Custom [P
M applications = Places * Jeififyram * Tue0647 T M O ~
Diagram -5 8
*] ddesignl »
oy
a
o processing_system7_0
G DoAR
& piegied - L FIXED 10
s P
a, A1 GPO_A ™ :nm_wwm_om L |
F TTCO_WAVEL OUTE il) AX|
4 TICO WaWE2_ouTh —ALLE -
= FELK CLKO—y
L 3 FELE_RESETO Np =500 ACLE 00 ol |
e r y .
®
& - block name ids 0 [0 shadow_Shadaw_reg_31:
|y inbertace aximm o
cignal enbe
hadow, Shadow reg in[31:0) .
Yriginal_Criginal_fiekd r[31:08
| "";ﬂﬂ_m,ﬂln,!“b [R—_—.
shadow_Shadow_reg_r{31:
IDCk_NBMe, i85 V1D
rst_peoceseing_system7_0_100M
_syme_cik e reseth
. resat_in [
e
=
B Pactures | #% vp-downcounkas - [thomatanup-.| @) Webmail - Main - Mozl Firefox | gL m-pw...,.wn.m_.'[sum | 174 g‘

Figure 1: SHADOW REGISTER IP interconnected with Zynq processor with well-generated
bitstream

Loading data files...

Loading site data...

Loading route data...

Processing options...

Creating bitmap. ..

Creating bitstream...

Writing bitstream ./design_l wrapper.bit...

INFO: [Vivado 12-1842] Bitgen Completed Successfully

SDK Sequences

® Applications ~ Places ~ g - shadow/src/helloworld.c - Xilinx SDK ~ Tue06:48 T 4) O -

Debug = shadow/sre/helloworld.c = Xilinx SDK - o x
File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help
rﬁvlte\Jﬁvovq.v \\:»u-u\:t.cs.ni»a:nJEng = .
|zema|e|oos |t vsivecvar

B [system.hdf |3 system.mss IH & xil_io.c W s,
#include <stdio.h>
35 #include "platform.h -
#include "xil_printf.h"
= - %
- #define block_name_Original _ADDRESS 0x0
#define block name_shadow_ADDRESS 0x4
& & #define ADDR [L]
“int main() =
init_platform(); —
xi1_out32(block_name_Original_ ADDRESS+ADDR, 0x12345678) ; L
u32 valuel= xil_In32(block_name_shadow_ADDRESS+ADDR) ; oy
e
cleanup_platform();
return 0; =]
El
(i]
- | writable Smart Insert | 8:24 J J Y)

J L up~down-counter = [/r-m,'.nup...l ' ‘Webmail = Main = Mozilla Firefox ‘ L shadow = [/home/anupam/Deslt...

et - smceniscetoneris.. 114 Q)

Figure 2:C-Program on SDK to check the functionality of SHADOW Register.

LOCK Register
VIVADO HW Design

Custom IP
—

& appiications = _piaces v Tiflloram ~ v A5 veo-
1
Disgram ¥ —@ax |
3 A design 1 » [
:‘- Special_reg_ids_0
N 4 interface_aximm
5} processing_system7 0 axi_periph ZregAFLin
=) =regh_F1_in_enb regh_enb
=] =regh F2_in[3:0] regA FL
a rst_processing_system?7_0_100M —regh_F2_in_enb regh F2 r3:01
I i mregh Fb1_in[31:0] regB_enb
4 m;l::“!" - mb_reset =regB Fbl_in_enb regB_Fbl_r(31:0]M
™ _reset | _struct.f =reqC_Fel_in[31:0] regC_enb -
@ ::::."ﬂﬂ.h peripheral_reset[0:0] —reqC_fcl_in_enb regC_fcl_ri3L:0]k
: _”;mﬂ’i sy wregD_Fdl_in[31:0] regD_enb b
& a e AXI Interconnect TYe00 Pl inend regh fel_f3L 0l
Processor System Reset —aclk
roc essi system7_0
P ing_sy ! Special reg_ids_vi_0
Lol 8 DDR
FIXED_IO - FIXED
USBIND_ 0|
M_AX)_GPO4-|
umﬁpn_gcl{YNQ_\m_mvEn_w -
TICO_ WAVEL OUT -
TTCO_WAVEZ OUT b
FCLE_CLKO
FCLK_RESETO_NE-—

114 @)

Figure 3: LOCK Register IP interconnected with Zynq processor with well-generated bitstream

Software SDK for C headers

® Applications ¥ Places v EY#31€-++ - Lock/src/lock.h - Xilinx SDK ¥ Tue0317 T) O v

C/€++ - lock/src/lock.h = Xilinx SDK B x

File Edit Source Refactor Navigate Search Run Project Xilink Tools Window Help

JF3VI@& {\DVvalﬁveﬁv@v@szavaq.ka [T R :&.f:@.ni:z‘_lelJaen 23 v
J@‘IBWV] m?J{hv‘{}wm@v»
(5 system.hdf ﬂ'msymm mss £ [& *helloworld.c Waxu“ W =
= M e
i} #define Special_reg_s_SIZE 0x10
#define Special_reg_regA_SIZE Ox4
— #define Special_reg_regB SIZE Ox4
o #define Special_reg_regC_SIZE Ox4
#define Special_reg_regD SIZE Ox4
-]

#define Special_reg_s_OFFSET 0x0

#define Special reg ragh OFFSET 0xO
#define Special_reg_regs OFFSET 0x4
#define Special_reg_regC_OFFSET 0x8
#define Special_reg_regD OFFSET OXC

#define Special_reg_s_ADDRESS 0x00

#define Special_reg_ragA ADDRESS ©x00

#define Special req_regB ADDRESS Ox04
#define Seclal reg_regC_ADDRESS Ox08

[ietine ouoc

#define SPECIAL_REG REGA FL_OFFSET 31

#define SPECIAL_REG_REGA_F1_MASK Ox80000000

#define SPECIAL_REG REGA_F1 DxS80000000

#define SPECIAL_REG_REGA_F2 OFFSET 0

#define SPECIAL_REG_REGA_F2_MASK o

#define SPECIAL_REG_REGE FBI_OFFSET

#define SPECIAL_REG_REGB FBI_MASK s

#define SPECIAL_REG REGC_FCl OFFSET 0

#define SPECIAL_REG_REGC_FC1_MASK OXFERRERE

#define SPECIAL_REG_REGD_FD1_OFFSET

#define SPECIAL_REG_REGD_FD1_MASK I

J

BEasse

& Pictures I ‘L up-down.counter = [/home/anup ‘ @ Webmail - Main = Mozilla Firefox ‘ ‘L lock = [/home /anupam/Desktop/... ‘_ 1/a

Writable Smart Insert | 28:33 J J -

Figure 4: C-Headers for Validation of LOCK Register

Software Sequences in SDK

® Applications ¥ Places » ++ - lock/src/helloworld.c = Xilinx SDK ¥ Tue03:17 T #) O -

C/C#+ = loclysrc/helloworld. ¢ = Xilinx SDK B x

File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

| Bee s &6 |avevgver|svovay|wisusw

:= v
le|es- |ma@| s -8 -eae
‘ffsystem hdf ﬁ"‘ system.mss (@ lock.h M xil_ie.c W =&
=
=] #include <stdio.h>
#include "platform.h'
— #include "xil_printf.h
o #include' lock.h"
#define ADDR 0x43c00000
E3 El
“int main()
{
init_platform(); %
Xil_out32(Special_req_regA_ ADDRESS+ADDR, 0x10000455) ;
¥il_out32(Special_reg_regB_ADDRESS+ADDR, 0x12345678) ;
Xi1_out32(Special_reg_regC_ADDRESS+ADDR, 0x25458657) ;
¥il_out32(Special_reg_regD_ADDRESS+ADDR, 0x3) ;
¥i1Z0ut32(Speci al_reg_regh_ADDRESS*ADDR, 0xB0000455) ;
Xi1Zout32(Special_reg_reqC_ADDRESS+ADDR, 0xS854612) ;
| xil_out3z2(Special_reg_regD ADDRESSt+ADDR,Ox 12358426) H
Xil_out32(Special_req_regA_ ADDRESS+ADDR, 0x10000455) ;
Xi1_out32(Special_req_regC_ADDRESS+ADDR,0x5894512) ;
x11_out32(Special_reg_regD_ADDRESS+ADDR, 0x12358426) ;
cleanup_platform();
return G;
I - Writable Smart Insert | 20: 1 I J sEpaB @
=] Pictures ‘ #L. up_down_counter - [/home/anup ‘ @ webmail - Main - Mozilla Firefox ‘ 4. lock - [/home/anupam/Desktop/. 1/4 @)

Figure 5: C-Program on SDK to check the functionality of LOCK Register.

Trigger buffer register
VIVADO HW Design:

Custom IP

™ ppplications = Places ~ J@iBram = / Tue0B24 ¥ W O ~
Diagram | —F =
#] & design 1 » | |

R——
a h ds_0 /
— chip, nams ids
é" < [F——
" st processing_system? 0 100M ke edvrage_rea name_FL_nl 3141
% | s s e i S e
> Y "':::‘:"’""'"'m_‘“"'” iy T — block_ruaraes JiRri_reg iavend F)_fI3L:1
@ wa y i ma_idatrigon_reg sama |
T Te

e -
]

DoR

FIXED_ID

] a3

(2 Pictunms | @ (¥t AMEA . | gL rogetalse - [fho. | [T |] #t rt0sktp). Bccrs- m,_l-:...| P toigbuffmodi —..

Figure 6: TRIGGER BUFFER REGISTER IP interconnected with Zynq processor with
well-generated bitstream

SDK Sequences:

M Applications ¥ Places » EY0318-++ - new/src/helloworld.c = Xilinx SDK ¥ Tue0827 T 4) O ~

C/C++ - new/src/helloworld.c —

File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

JHGJ@‘J@&vJ%}\vi}\vﬁ:@v-v

[system.mss) 2 (8 xilio.e W (&) xilio.c W [& xil_io.c] [@ xilio.c W [8 xilio.c W [8 xil_io.c W 8 xil_io.c W [@ xilio.c W 2] xilio.c W”, =@
& &
#anclude <stdio.h>
By #include 'platform.hr o
#include "xil_printf.ht
= #define BLOCK_NAME_TRIGGER REG_NAME_OFFSET 0X00
adefine BLOCK_NAME_TRIGGER REG_NAME_F1_MASK OxFFFFFFFF0O000000000000000
& adefine BLOCK_NAME_TRIGGER REG_NAME_BUFF_O_OFFSET OXO8 —
4 #define BLOCK_NAME_TRIGGER REG_NAME_F2_MASK OxFFFFFFFFO0000000 -
#define BLOCK_NAME_TRIGGER REG_NAME_BUFF_1_OFFSET 0X04
#define BLOCK_NAME_TRIGGER REG_NAME_F3_MASK OXFRFFFFFF
#define ADDR Ox43c00000
~#define mWriteReg(BaseAddress, RegOffset, Data) \
Xil_out32((BaseAddress) + (RegOffset), (u32)(Data))
“#define mReadReq(BaseAddress, RegOffset) 1\
Xil_In32((BaseAddress) + (RegOffset))
~int main()
1
init_platform();
Xi1_Out32(BLOCK_NAME_TRLGGER_REG_NAME_BUFF_0_OFFSET+ADDR, 0x42) ;
X11Z0ut32(BLOCK_NAME TRIGGER_REG_NAME_BUFF_1_OFFSET+ADDR, 0x67) ;
Xi1Z0ut32(BLOCK_NAME_TRLGGER_REG_NAME_OFFSET+ADDR, Ox81) ;
u32 valuel= Xil_Tn32(BLOCK_NAME_TRIGGER_REG_NAME_OFFSET+ADDR) ;
u32 value2= Xil_In32(BLOCK_NAME_TRIGGER REG_NAME_BUFF_0O_OFFSET+ADDR) ;
u32 value3= Xil_In32(BLOCK_NAME_TRIGGER REG_NAME BUFF_1_OFFSET+ADDR) ;
cleanup_platform();
roturn A
E<> Writable Smart Insert | 43:1 J J s AE D
=] Pictures ‘ @ [Minimum AMBA AXI... ‘ 4 reg_fatse = [/home/a... | [F [Calcutator] J [*hw (~/Desitop) = g... ‘ # trig_buff_modi= [/h. 174 (@)

Figure 7:C-Program on SDK to check the functionality of TRIGGER BUFFER Register.

Counter
VIVADO Design

10

Custom [P

™ ppplications * Places * Jilfram = Tee02:26 ¥ # O~
Disgram y y. -8 8 x
#] &design 1 » I /

o
o
w
3
a
el processing system? O f
b bR, - DR
™ FuED 10 y: FIXED 10
wwooill T] 1
[~ e pencessing system? 0 axl_periph
—H.0 GO L WNVED,_OuT]
& rgyNChomeoat | | BR
3 Trcs wavez o) = -» chip_naene ids 0
. Fak
= b aax 1 siruertuce asimm
FOLE RESETS W thock ame.idsreq,_osunt ent)
et - ek, e £Eu, . ek e e e 8o
il ok rame gy oust M 70 {3, DéOCK_name ickireg_count_na f7.0]
T

o0 FRerconnect

0] " I~

reg-false - [fhome/snupamiDeskt.—. | [hw.counter | £ MM"—MIMCI\‘DUI..I_ 1/4

Figure 8: COUNTER IP interconnected with Zynq processor with well-generated bitstream
Software Embedded C code in Xilinx SDK

® Applications ¥ Places v EJBSI@++ - counter/sre/helloworld.c - Xilink SDK Tue02:27 F) O ~

C[C++ - counter/src/helloworld.c - Xilinx SDK - @ x

File Edit Source Refactor Navigate Search Run Project Xilinx Tools Window Help

|z -Bes s -4 -6 |a s8-8 6|5 -0vav|nipuEr|ssene |0 o = .
]@ & & v | B @ é]%uvélv&-cv@
[Project Explorer 5 =8 HL; systemhdf | system mss “i loworde 1 - [xil_cache.c | [xilio.c | [8 xil_cache.c } =0(&o = m| =8
R
BEs%|Y Y 7
" #include <stdio.h>
#include "xil_printf.hv
+ §% Binaries #define chip_name_s_OFFSET Ox0 o stdioh
#define chip_name_block_name_s_OFFSET ox0 .
©) Includes #define chip_name_block_name_rag_count_OFFSET 0x0 .
el #define BLOCK_NAME_REG_COUNT_FLD_OFFSET O & platform.n
% & Debug #define ADDR 0x43c00000 ¥ iprintth
e =int main() # chip_name_s_OFFS
+ i counter_bsp t init platforn(); # chip_name_block_n
¥ B design.1_wrapper_hw_platform xi1_out32(BLOCK_NAME_REG_COUNT_FLD_OFFSET+ADDR, 0x30) ; # chip-name_block-n
| cleanup_platform();
return O # BLOCK_NAME_REG
ADDR
& Target C. p— - [Problems | ¥ Tasks | & Console 8 . E Properties| 42 Terminal = O El SDK Log | * Debug £ % @ |+ ¥ =08
arget Connections
e No consoles to display at this time, B
& Local [default]
I - Writable Smart Insert | 49: 1 I

#\. reg_false = [/nome/anupam/Deskt... ‘ |E hw_counter ‘ #. hw_counter = [/home/anupam/Des... ‘ 1/4
Figure 9:C-Program on SDK to check the functionality of COUNTER.

By following this procedure, various types of registers can be validated, including Interrupt
Registers, FIFO Registers, and Read/Write Registers. This ensures that all specialized registers
function correctly and meet the necessary specifications. Utilizing SystemRDL with UDP for design
and Vivado for verification streamlines the process, providing a robust framework for the
development and validation of custom IPs.

11

II. APPLICATION

A. Example - 1

L, Security Application

BUS signals . N)
Register With LOCK ACCESS
control, Data I/P :> & :> HW signals O/P

i - Trigger Buffer Register. Controlled Buffers
Corftr?l logic =3| ounter Trigg 8 e ——|
and Timing purpose

4]

Operation
- | Interrupt Register . Programmable Interrupt
.) i . = Controller
BUS signals < - - =S nchronization
Status, Data O/P RDTWR I FIFO Register I .
/ . HW Signals I/P

X . Register
TXCRX Operation Ly ([Functional logic]

CUSTOM PERIPHERAL

If the registers used in custom peripherals are already validated, they can be directly connected with
the functional logic and interconnected according to the application requirements. This simultaneous
design and verification/validation process minimizes the time to market and ensures that these
registers are reusable across different custom IPs without needing re-verification. Only the functional
blocks within the IP need to be tested. The validated registers are tested in every sequence,

considering all aspects and corner cases.

B. Example - 2

Baud Rate
Register 0 _\ ﬁ
Address Register

Configure Serial to Data Register

Register |) > parallel

Serial Data Converter D

- Command Reg

L -

L Length Register Counter for

store data
Sequence Counter ﬁ
| Detector control —

respect length
A Simple Block Diagram for Reciever which takes data and store data according to length of data

12

In this application, a sample receiver block diagram is presented. The receiver processes data packets
composed of start-address-command-data-stop sequences. Each packet transmission ends with a stop
condition, and a new packet transmission begins with a start condition. A sequence detector
identifies the start conditions and enables data passage through a multiplexer. A counter control
mechanism ensures that parts of the packet are stored in 8-bit segments within specific registers.
Each 8-bit segment serves as input to another counter, dictating the length of data to be stored in the
data register. For instance, if the length data of the packet (8-bit) is all ones, 256 bits of data will be
stored in the data register.

The counter functions as a down counter, loaded with the length value, and allows data storage until
it reaches zero. The programmer sets the baud rate and configures the registers accordingly.

In this example, registers and counters are crucial components of the block diagram. If these
components have already been verified and validated, and are reused in this context, no further
verification is necessary.

III. Results

The approach of hardware/software co-design and co-verification significantly improves efficiency,
reducing cycle time by up to 30%. This method is not only faster but also more cost-effective and
compact compared to traditional methodologies. The simultaneous generation of results during
testing in both the verification and validation environments for hardware and software further
enhances productivity and reliability.

IV. Conclusion

This solution provides a generalized approach for any custom peripheral IP, effectively addressing
the challenges in the embedded real world. By integrating hardware and software co-design and
co-verification, the approach delivers a transformative impact on the development and deployment of
embedded systems, setting a new standard for efficiency and effectiveness in the industry.

V. References:

1) https://en.wikipedia.org/wiki/Embedded system
2) https://docs.amd.com/r/en-US/ug910-vivado-getting-started/Using-the-Vivado-IDE
3) SystemRDL documentation: : 7

4) https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide 1.2.pdf

13

https://docs.amd.com/r/en-US/ug910-vivado-getting-started/Using-the-Vivado-IDE
http://www.accellera.org/downloads/standards/systemrdl

