
Hardware/Software co-design and co-verification of
embedded systems

Mayank Nigam, Agnisys Technology Pvt. Ltd, India, mayank@agnisys.com

Nikita Gulliya, Agnisys Technology Pvt. Ltd, India, nikita@agnisys.com

Abstract— As hardware chip complexity continues to increase, these chips are frequently utilized
as targets in Initiator-Target Architectures, where the targets are commonly referred to as custom
peripheral IPs. The initiator can write to and read from these peripherals. While silicon companies
provide functionality and register information in their datasheets, they often overlook validation from
the programmer's perspective—the ones who develop software to control these IPs. In embedded
systems, programmers write software into the processor’s program memory to interface with external
devices and manage peripheral hardware pins, tailored to real-world applications. Therefore, it is
crucial for silicon vendors to adopt a comprehensive approach to design, verify, and validate these
peripheral IPs. This paper presents methodologies for the co-design, verification, and validation of
hardware and software. Entire process will be demonstrated through detailed examples.

Keywords—RAL,NRE,VIVADO ,SDK,RTL,UDP

I. INTRODUCTION

A digital peripheral custom IP is typically divided into two main sections: the logic circuits, which
are designed based on specific functionality, and the registers, which are used for configuring the IP,
as well as sending and receiving data to and from the initiator and external devices. These registers
also act as inputs for the internal functional circuits that send data to the output pins of the IP.
Programmers use the status of these pins/ports to drive external devices in the embedded world.

mailto:mayank@agnisys.com

Therefore, hardware/software co-design and co-verification are essential before complex IPs are
released to the market. Addressing this need in a timely manner is crucial; otherwise, the
non-recurring engineering (NRE) costs for complex peripherals could escalate, and the failure rate of
embedded systems could increase, posing risks to industries such as automotive, avionics, medical,
and communication.

A. Approach

Our approach allows programmers to write data to the IP’s registers from the software side. These
register values must match the expected values based on functionality at any given time after reset or
default conditions. Correct register values ensure that IPs are functioning correctly. In embedded
systems, these registers are used in application programs, so it is crucial to write to and read the
correct values from the correct register address locations. We address this problem through the
hardware-software interface by creating prototypes and verifying and validating them. We use HDL
languages for RTL generation, UVM for verification, and Embedded C for validation, independent of
any processor, to test simple and complex registers for functionality such as lock, shadow, aliasing,
TMR, trigger buffer, RW pair, FIFO, counters, etc. These validated simple and complex peripheral
registers can be used in UART, I2S, GPIO, EEPROM, dual port RAM, or any custom IPs for
embedded applications.

B. Detailed Work

For the hardware/software co-design and co-verification approach, we need four crucial components:

1. Register specification in RDL format
2. RTL generation
3. Register map (header files)
4. UVM code for the verification environment
5. C-API and C-code for the validation environment

These components undergo a comprehensive process to ensure the IP functions correctly within the
embedded domain.

C. Description:

1. SystemRDL Format: Specifications of registers can be written in SystemRDL format.
SystemRDL (Register Description Language) is a language specifically designed to describe
the registers in digital systems, capturing the structure, behavior, and constraints of registers
in a formalized way. This format facilitates automated generation of RTL, documentation,
and software drivers, ensuring consistency and reducing manual errors.

2

addrmap block_name{
reg {
field {

hw=rw;
sw=rw;

} fld[31:0];
regwidth=32;

} reg_name ;
};

2. RTL Generation: The RTL (Register Transfer Level) or hardware design can be written in any
HDL (Hardware Description Language), such as VHDL or Verilog. This step involves defining the
detailed logic and structure of the digital circuits based on the specifications, ensuring that the design
meets the required functionality and performance criteria.

—-------------part of code—---------------------
always @(posedge clk) begin

if (!reset_l)
begin

reg_name_fld_q <= 32'bx;
end

else
begin

if (reg_name_fld_in_enb) //fld : HW Write
begin

reg_name_fld_q <= reg_name_fld_in;
end

else
begin
if (reg_name_wr_valid) //FLD : SW Write

begin
reg_name_fld_q <= (wr_data [31 : 0] & reg_enb [31 : 0]) |

(reg_name_fld_q & (~reg_enb [31 : 0]));
end

end
end

end //end always

—------------part of code—----------------------------------

3. Register Map: The register map is essential for the hardware-software interface. It defines the
address locations of the registers, facilitating the software's ability to correctly access and
manipulate the hardware registers. This map ensures seamless communication between the
software and the hardware components.

—------------part of code—------------------------------------
#define block_name_s_ADDRESS 0x0
#define block_name_reg_name_ADDRESS 0x0
#define BLOCK_NAME_REG_NAME_FLD_OFFSET 0
#define BLOCK_NAME_REG_NAME_FLD_MASK 0xFFFFFFFF

3

#define BLOCK_NAME_REG_NAME_FLD_INV_MASK 0x0
#define BLOCK_NAME_REG_NAME_FLD_VALUE_MASK 0x7FFFFFFF
#define BLOCK_NAME_REG_NAME_FLD_INV_VALUE_MASK 0x80000000
#define BLOCK_NAME_REG_NAME_FLD_SIZE 32
#define BLOCK_NAME_REG_NAME_FLD_DEFAULT 0
#endif /* _BLOCK_NAME_REGS_H_ */
/* end */
-----------------part of code—---

4. UVM Code: UVM (Universal Verification Methodology) code can be written in an
environment consisting of the Register Abstraction Layer (RAL) and test sequences. The
RAL provides an abstract, high-level representation of the registers, facilitating the
verification of register operations. Test sequences are then used to simulate various scenarios
and validate that the registers and the overall system function correctly under different
conditions.

`ifndef CLASS_block_name_reg_name
`define CLASS_block_name_reg_name
class block_name_reg_name extends uvm_reg;

`uvm_object_utils(block_name_reg_name)

rand uvm_reg_field fld;/**/

// Function : new
function new(string name = "block_name_reg_name");

super.new(name, 32, build_coverage(UVM_NO_COVERAGE));
add_coverage(build_coverage(UVM_NO_COVERAGE));

endfunction

// Function : build
virtual function void build();

this.fld = uvm_reg_field::type_id::create("fld");
this.fld.configure(.parent(this), .size(32), .lsb_pos(0), .access("RW"),

.volatile(0), .reset(32'd0), .has_reset(1), .is_rand(1),

.individually_accessible(0));
endfunction

endclass
`endif

. . .

. .

task body;

uvm_reg_data_t reg_name ;

if(!$cast(rm, model)) begin
`uvm_error("RegModel : block_name_block","cannot cast an object of type

uvm_reg_sequence to rm");
end

4

if (rm == null) begin
`uvm_error("block_name_block", "No register model specified to run

sequence on, you should specify regmodel by using property 'uvm.regmodel' in the
sequence")

return;
end

rm.reg_name.write(status, 'h012345678, .parent(this));
rm.reg_name.read(status, reg_name, .parent(this));

var1=reg_name;

endtask: body

5. wr_data and rd_data Simulation: Verification of the sequences created above can be
performed in Questa-Sim by simulating the write (wr_data) and read (rd_data) operations.
This involves creating testbenches that generate various data patterns to be written to the
registers and subsequently reading back the data to ensure correctness. The simulation checks
the integrity and functionality of the registers, validating that data written to the registers can
be accurately read back, and that all sequences and corner cases are handled properly.

6. C-API and C-Code for the Validation Environment: The C-APIs are macros designed to write to
and read from the registers, while the C-code constitutes the firmware for custom IPs. This firmware
is processor-independent, ensuring that it can be used across various embedded systems. These
components facilitate the validation of the hardware by providing a straightforward interface for
software to interact with the registers, confirming their correct operation in different scenarios.

5

C-API (Hardware-Software Interface)

----------------------part of code--------------

-------------------------part of code-----------

C-Code

#include "write_read.h"
#include "block_name_seq_name_iss.h"
int block_name_seq_name(int baseAddress) {
int reg_name;
int var1 = 0 ;
REG_WRITE(BLOCK_NAME_REG_NAME_ADDRESS(baseAddress),0x12345678);
reg_name = REG_READ(BLOCK_NAME_REG_NAME_ADDRESS(baseAddress));
var1 = reg_name;
return 0;
}

7. Validation Code in Xilinx SDK Environment: The validation code is developed within the Xilinx
Software Development Kit (SDK) environment. This involves writing firmware and test code to
verify the functionality of the custom IPs. The Xilinx SDK provides tools and libraries that facilitate
the development and debugging of software for Xilinx devices, ensuring that the custom peripherals
operate correctly and efficiently within the target embedded system.

D. Examples

With the use of UDP (User Defined Property) in SystemRDL, custom properties can be added to the
register definitions for special registers. This enables the design of specialized registers tailored to
specific needs. Once defined, the code can be implemented and verified in Vivado. This approach
allows for precise customization and thorough verification of IP components, ensuring they meet the
desired specifications and perform reliably in the final application

6

SHADOW Register

Vivado HW Design:

Figure 1: SHADOW REGISTER IP interconnected with Zynq processor with well-generated
bitstream

-----------------part of implementation log-----------------------

SDK Sequences

7

Figure 2:C-Program on SDK to check the functionality of SHADOW Register.

LOCK Register

VIVADO HW Design

Figure 3: LOCK Register IP interconnected with Zynq processor with well-generated bitstream

8

Software SDK for C headers

Figure 4: C-Headers for Validation of LOCK Register

Software Sequences in SDK

Figure 5: C-Program on SDK to check the functionality of LOCK Register.

Trigger buffer register

VIVADO HW Design:

9

Figure 6: TRIGGER BUFFER REGISTER IP interconnected with Zynq processor with
well-generated bitstream

SDK Sequences:

Figure 7:C-Program on SDK to check the functionality of TRIGGER BUFFER Register.

Counters:

VIVADO Design

10

Figure 8: COUNTER IP interconnected with Zynq processor with well-generated bitstream

Software Embedded C code in Xilinx SDK

Figure 9:C-Program on SDK to check the functionality of COUNTER.

By following this procedure, various types of registers can be validated, including Interrupt
Registers, FIFO Registers, and Read/Write Registers. This ensures that all specialized registers
function correctly and meet the necessary specifications. Utilizing SystemRDL with UDP for design
and Vivado for verification streamlines the process, providing a robust framework for the
development and validation of custom IPs.

11

II. APPLICATION

A. Example - 1

If the registers used in custom peripherals are already validated, they can be directly connected with
the functional logic and interconnected according to the application requirements. This simultaneous
design and verification/validation process minimizes the time to market and ensures that these
registers are reusable across different custom IPs without needing re-verification. Only the functional
blocks within the IP need to be tested. The validated registers are tested in every sequence,
considering all aspects and corner cases.

B. Example - 2

12

In this application, a sample receiver block diagram is presented. The receiver processes data packets
composed of start-address-command-data-stop sequences. Each packet transmission ends with a stop
condition, and a new packet transmission begins with a start condition. A sequence detector
identifies the start conditions and enables data passage through a multiplexer. A counter control
mechanism ensures that parts of the packet are stored in 8-bit segments within specific registers.
Each 8-bit segment serves as input to another counter, dictating the length of data to be stored in the
data register. For instance, if the length data of the packet (8-bit) is all ones, 256 bits of data will be
stored in the data register.

The counter functions as a down counter, loaded with the length value, and allows data storage until
it reaches zero. The programmer sets the baud rate and configures the registers accordingly.

In this example, registers and counters are crucial components of the block diagram. If these
components have already been verified and validated, and are reused in this context, no further
verification is necessary.

III. Results

The approach of hardware/software co-design and co-verification significantly improves efficiency,
reducing cycle time by up to 30%. This method is not only faster but also more cost-effective and
compact compared to traditional methodologies. The simultaneous generation of results during
testing in both the verification and validation environments for hardware and software further
enhances productivity and reliability.

IV. Conclusion

This solution provides a generalized approach for any custom peripheral IP, effectively addressing
the challenges in the embedded real world. By integrating hardware and software co-design and
co-verification, the approach delivers a transformative impact on the development and deployment of
embedded systems, setting a new standard for efficiency and effectiveness in the industry.

V. References:
1) https://en.wikipedia.org/wiki/Embedded_system
2) https://docs.amd.com/r/en-US/ug910-vivado-getting-started/Using-the-Vivado-IDE
3) SystemRDL documentation: https://www.accellera.org/downloads/standards/systemrdl
4) https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf

13

https://docs.amd.com/r/en-US/ug910-vivado-getting-started/Using-the-Vivado-IDE
http://www.accellera.org/downloads/standards/systemrdl

