
Optimizing Turnaround Times In A CI 
Flow Using a Scheduler 

Implementation
Robert Strong 



Contents
•Problem Statement 

•Previous Flow 

• Scheduler CI Flow Concept

• Implementation

• Learned Best Practices 

•Effects & Results

• Future Improvements

•Questions?



Problem Statement
• Large number of changesets

• Long turnaround times
• Accepts & Rejects

•Variable times 

•Backlogs during milestones 

• Slow in perfect conditions



Previous Flow 
• Serial steps 

• Minimize resource usage

• Stage based 
• Large downtimes
• Human intervention during peaks

• Incremental Improvements
• Elimination logic
• More testcases

• Jenkins Jobs



Previous Scenario #1



Previous Scenario #2



Scheduler CI Flow Concept
•Run testcases in parallel 

• Testcase – Unique combination of changesets

• Scheduler creates testcases

•Processor reacts to completions

•Goal
• Turnaround time = Test time



Scheduler Concept



Implementation: Individual Scheduler
• Individual scheduler grabs user request

• In house scripts
• Create immutable copy
• Launch testcase
• Ping combined scheduler



Implementation: Combined Scheduler
•Combined scheduler for testcases > 1

• Grab state from filesystem
• Prep workspaces
• Launch needed testcases
• Jenkins prop system



Implementation: Testcase State & Prop 
Details
• State saved in filesystem

• Directory for active testcases
• Multiple testcases launched/scheduler run
• Moved to archive after completion
• DB for pass/fail & metadata

•Prop files w/all info per testcase
• All steps can query & interact



Implementation Details: Testcases
• Freestyle Jenkins

• Run test suite

• Serial post-process for complete

•Non-serial for aborted 



Implementation: Post-processer
•Completed mode only:

• Changesets to push/remove
• Kill subset & superset testcases

•Completed & Aborted mode
• Update filesystem state
• Recycle Workspace
• Notify Users



Best Practices 
• Lower costs allows for more testcases

• Finite resources (batch/license/IO)

•Minimizing the cost of a testcase 
• Exit immediately on fails
• Block external dependencies
• Minimize false fails
• Recycle workspaces

• “Guilt Free” launch & kill testcase



Effects & Results
• Fast & stable average & median turnaround times

• ~15 min of overhead
• ~50% reduction in average & median times 

•Consistent results @ peak submission rate



Future Improvements 
•Batch system interface

•Consolidate schedulers

•Dynamic scheduler
• Adjust number of testcases 

• Resources

• # of changesets

• Pass rate

• Priority

•Partial Testing

•Data Queries/Storage



Questions?
• Issues?

•Reliability?

•Admin Interface? ?


