
Open-Source Virtual Platforms for Industry and Research

1

Open-Source Virtual Platforms for
Industry and Research

Nils Bosbach, RWTH Aachen University

Lukas Jünger, MachineWare GmbH

Rainer Leupers, RWTH Aachen University

Open-Source Virtual Platforms for Industry and Research

2

About Us
Nils Bosbach
• PhD student at Chair for Software for Systems on Silicon (SSS),

RWTH Aachen University

Lukas Jünger
• Co-founder of MachineWare GmbH
• Chair of the SystemC Configuration, Control and Inspection (CCI)

Working Group

Open-Source Virtual Platforms for Industry and Research

3

What to Expect?

Open-Source Virtual Platforms for Industry and Research

Open-Source Virtual Platforms for Industry and Research

4

Virtual Platform

Open-Source Virtual Platforms for Industry and Research

What to Expect?

SoC SWDevice

“A virtual platform is a functional
representation of a digital system
written entirely in software.”
- Cadence

Open-Source Virtual Platforms for Industry and Research

5

What to Expect?

Open-Source Virtual Platforms for Industry and Research

• Prototyping
• Develop & test models
• Embedded SW development

• Prototyping of new architectures
• Architecture exploration
• Improve simulation performance

Open-Source Virtual Platforms for Industry and Research

6

What to Expect?

Open-Source Virtual Platforms for Industry and Research

Many commercial
solutions available

Solution we will
talk about today:

Available on GitHub
✅ Clone
✅ Play around
✅ Extend

Open-Source Virtual Platforms for Industry and Research

7

Free and/or Open-Source Software

• Disclaimer: I am not a lawyer!

• "Free of charge" or "free as in freedom"?

• Licenses

• Are Apache 2.0 and GPLv2 compatible? Maybe

Apache 2.0 GPLv2

Closed-source Allowed Not-allowed

Commercialization Easy (no submarine patents) Difficult

IP Protection Easy (derived works under another license) Difficult

Open-Source Virtual Platforms for Industry and Research

8

Virtual Platforms
A brief introduction

Open-Source Virtual Platforms for Industry and Research

9

Why Do We Need Virtual Platforms?

1. Which device should be designed?

3. Develop chip
4. Tape out chip

HW Engineers

3. Develop Virtual Platform
4. Develop, test & verify embedded SW

SW Engineers

5. Test & verify embedded SW on the HW chip

2. Which components are needed?

Open-Source Virtual Platforms for Industry and Research

10

Why Should You Use Virtual Platforms?

Requirements

Component selection

HW development

SW development

time

Development time

Open-Source Virtual Platforms for Industry and Research

11

Why Should You Use Virtual Platforms?

Requirements

Component selection

HW development

SW development

time

“shift left”

Scalability

• Easy distribution
• Integrates with CI

Introspection

• Stop at any time
• Access all register values

Tracing

• Record tracing data
• Analyze SW behavior

Development time

Open-Source Virtual Platforms for Industry and Research

12

Abstraction Level

Performance

Accuracy

Analog

Gate-level

RTL

Approximately-timed

Loosely-timed

Virtualization

Trace-driven

Analytical models

• Many different abstraction levels

• Tradeoff between performance and
accuracy

Choose the level that fits your needs

Open-Source Virtual Platforms for Industry and Research

13

Virtual Platform Design
Let’s get started!

Open-Source Virtual Platforms for Industry and Research

14

How to Start?

Specification

• List of components
• Interface description
• Functional behavior

Virtual Platform

• Simulates the behavior
• Can execute target SW

VCML

(Custom) Models

Standardized “design and verification language”
(IEEE Std. 1666™-2011)

Virtual Components Modeling Library – adds modeling primitives

VCML-based models to mimic the behavior of the SoC

Open-Source Virtual Platforms for Industry and Research

15

Why Do We Need a Modeling Library?

✅ Concept of time
✅ Simulated parallelism
✅ Standardized interfaces (ports, TLM sockets)
✅ Hierarchy (modules)
❌ Models (e.g., buses)
❌ Frequently-needed parts (e.g., register model)
❌ Often-used communication-protocol implementations (SPI, CAN, I²C, …)
❌ TLM logging/tracing, (parametrization, configuration) } VCML

Open-Source Virtual Platforms for Industry and Research

16

Virtual Components Modeling Library (VCML)

• Loosely-timed simulation framework based on SystemC TLM-2.0

• Apache-2.0 license

• Windows, Linux, MacOS
• x86, arm64 CI builds

• Provides
• Commonly used features (registers, peripherals, etc.)
• Abstract protocols based on TLM-2.0 (interrupt, SPI, I²C, etc.)
• Models (memory, memory-mapped buses, UARTs, etc.)

• Extensive unit test suite
https://github.com/machineware-gmbh/vcml

Open-Source Virtual Platforms for Industry and Research

17

Why Should You Use VCML?

• Completely standard SystemC TLM-2.0 compatible

• Saves your time when construction a new VP
• Reuse VCML features and models

• Supports all major Systems: Windows, Linux, MacOS, x86 and arm64

• Easy commercialization through Apache 2.0 license

• Example VPs available open-source (ARM and OpenRISC)

• Commercial support available through MachineWare

Open-Source Virtual Platforms for Industry and Research

18

VCML-Highlights

Tracing

Debugging support Session Protocol

Backends

ModelsModeling primitives

Scripting

Configurability

Open-Source Virtual Platforms for Industry and Research

19

Implementation of the CPU Model

CPU

TLM initiator socket
to access memory

Interrupt target socket
to receive interrupts

processor

component

module

sc_module

• Starting point for processor implementation
• Implements debugging & temporal decoupling

• Basic building block of SystemC

• Basic building block of VCML
• Adds support for VCML features (sockets, properties, commands, session)

• Basic block for hardware models
• Provides reset and clock sockets

In
h

er
it

an
ce

Open-Source Virtual Platforms for Industry and Research

20

Target Software Debugging

• Full debugging support
• Including OS

• GDB/Lauterbach’s Trace32

vcml::processor
TCP

connection

Remote GDB

Open-Source Virtual Platforms for Industry and Research

21

Lauterbach‘s Trace32

https://youtu.be/B6zys6_M-k4

Watch our Trace32 demo:

VP

• Multicore debugging
• OS awareness
• User-space debugging

Open-Source Virtual Platforms for Industry and Research

22

Open-Source Virtual Platforms for Industry and Research

23

How to Implement Peripherals?

peripheral

component

module

sc_module

• Starting point for custom I/O peripheral models
• Adds support for registers

• Basic building block of SystemC

• Basic building block of VCML
• Adds support for VCML features (sockets, properties, commands, …)
• Basic block for hardware models
• Provides reset and clock sockets In
h

er
it

an
ce

Open-Source Virtual Platforms for Industry and Research

24

Peripheral Interfaces – TLM Protocols

Peripheral

Interfaces

• Memory accesses
• Interrupt
• Communication/data

transfer (e.g., SPI, I²C, …)

Based on TLM blocking transports

Initiator Target

sockets

p

Payload
• Operation (R/W)
• Data pointer
• Attributes

Open-Source Virtual Platforms for Industry and Research

25

Peripheral Interfaces – TLM Protocols

Peripheral Initiator Target

Process payload
• Execute operation (R/W)

p

Interfaces

• Memory accesses
• Interrupt
• Communication/data

transfer (e.g., SPI, I²C, …)

Based on TLM blocking transports

Open-Source Virtual Platforms for Industry and Research

26

Peripheral Interfaces – TLM Protocols

Peripheral Initiator Targetp

Send payload back
• Analyze returned payload

Interfaces

• Memory accesses
• Interrupt
• Communication/data

transfer (e.g., SPI, I²C, …)

Based on TLM blocking transports

Open-Source Virtual Platforms for Industry and Research

27

Peripheral Interfaces – TLM Protocols

Peripheral Initiator Target

• CAN
• Clock
• Ethernet
• GPIO
• I²C

• PCI
• SD
• Serial
• SPI
• VirtIO

Implemented protocols

Interfaces

• Memory accesses
• Interrupt
• Communication/data

transfer (e.g., SPI, I²C, …)

Based on TLM blocking transports

Open-Source Virtual Platforms for Industry and Research

28

Predefined Peripherals in VCML

• Memory

• Interrupt controllers (ARM, RISC-V)

• Ethernet, SPI, I²C controller

• SD controller

• UARTs (e.g., PL011)

• Sensors (SPI/I²C-based)

• VirtIO (controller, console, RNG, block, ...)

• CAN (bridge & bus)

Open-Source Virtual Platforms for Industry and Research

29

Configurability

• VCML provides properties to configure modules
• CCI-compatible

• LUA scripting

• Session protocol

Remote control
Session

 CCI

Open-Source Virtual Platforms for Industry and Research

30

Session

VP

VCML Session
Protocol

Virtual Platform Explorer (ViPER)
• Control the

simulation
• Access/inspect

models
• Open, TCP-based

protocol

Open-Source Virtual Platforms for Industry and Research

31

PyVP

Session

VP

VCML Session
Protocol

Virtual Platform Explorer (ViPER)

• Python-based implementation of a
Session client

• Use Python to script the simulation

Open-Source Virtual Platforms for Industry and Research

32

?

PyVP

Session

VP

VCML Session
Protocol

Virtual Platform Explorer (ViPER)

• Infinite number of use cases
• Very powerful interface
• Simple usage

Open-Source Virtual Platforms for Industry and Research

33

Free Implementations

• OpenRISC 1000 Multicore Virtual Platform (OR1KMVP)
• Embeds the open-source OR1KISS into vcml::processor

• Simple interpreter-based instruction-set simulator (ISS)

• https://github.com/janweinstock/or1kmvp

• An ARMv8 Virtual Platform (AVP64)
• Embeds the ARMv8 unicorn implementation (QEMU-based) into
vcml::processor
• Dynamic-binary-translation (DBT)-based ISS

• https://github.com/aut0/avp64

https://github.com/janweinstock/or1kmvp
https://github.com/aut0/avp64

Open-Source Virtual Platforms for Industry and Research

34

Commercial Implementations

• SIM-V
• Ultra-fast RISC-V simulator

• Supports state-of-the-art extensions

• Custom-instruction API

• SIM-A
• Ultra-fast ARM Cortex-M simulator

• QBox
• QEMU in SystemC TLM-2.0 through VCML

Open-Source Virtual Platforms for Industry and Research

35

Full-System Integration

Bind sockets

Start simulation

Instantiate models

MEM

BUS

TIMER

CPU GIC
UART

BRIDGE

TERM

Open-Source Virtual Platforms for Industry and Research

36

SW Development

Demo - Find the tutorial on the AVP64 GitHub page

https://github.com/aut0/avp64/tree/master/vscode

Open-Source Virtual Platforms for Industry and Research

37

Summary
From spec to chip

Open-Source Virtual Platforms for Industry and Research

38

SW StackVP Benefits

Summary

Scalability

Development Time Introspection

Tracing

VCML

(Custom) Models

Slides: https://mwa.re/vcml-tutorial

	Default Section
	Slide 1: Open-Source Virtual Platforms for Industry and Research

	Intro
	Slide 2: About Us
	Slide 3: What to Expect?
	Slide 4: What to Expect?
	Slide 5: What to Expect?
	Slide 6: What to Expect?
	Slide 7: Free and/or Open-Source Software

	Virtual Platforms
	Slide 8: Virtual Platforms
	Slide 9: Why Do We Need Virtual Platforms?
	Slide 10: Why Should You Use Virtual Platforms?
	Slide 11: Why Should You Use Virtual Platforms?
	Slide 12: Abstraction Level

	Virtual Platform Design
	Slide 13: Virtual Platform Design
	Slide 14: How to Start?
	Slide 15: Why Do We Need a Modeling Library?
	Slide 16: Virtual Components Modeling Library (VCML)
	Slide 17: Why Should You Use VCML?
	Slide 18: VCML-Highlights
	Slide 19: Implementation of the CPU Model
	Slide 20: Target Software Debugging
	Slide 21: Lauterbach‘s Trace32
	Slide 22
	Slide 23: How to Implement Peripherals?
	Slide 24: Peripheral Interfaces – TLM Protocols
	Slide 25: Peripheral Interfaces – TLM Protocols
	Slide 26: Peripheral Interfaces – TLM Protocols
	Slide 27: Peripheral Interfaces – TLM Protocols
	Slide 28: Predefined Peripherals in VCML
	Slide 29: Configurability
	Slide 30: Session
	Slide 31: Session
	Slide 32: Session
	Slide 33: Free Implementations
	Slide 34: Commercial Implementations
	Slide 35: Full-System Integration
	Slide 36: SW Development

	Summary
	Slide 37: Summary
	Slide 38: Summary

