

Institute for Communication Technologies and Embedded Systems

LO YEAR ANNIVERSARY

Open-Source Virtual Platforms for Industry and Research Nils Bosbach, RWTH Aachen University Lukas Jünger, MachineWare GmbH Rainer Leupers, RWTH Aachen University

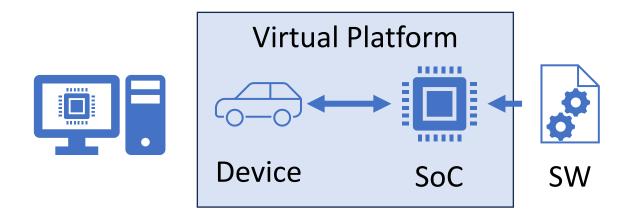
About Us

Nils Bosbach

 PhD student at *Chair for Software for Systems on Silicon (SSS)*, RWTH Aachen University

Lukas Jünger

- Co-founder of *MachineWare GmbH*
- Chair of the SystemC Configuration, Control and Inspection (CCI) Working Group



Open-Source Virtual Platforms for Industry and Research

Open-Source Virtual Platforms for Industry and Research

"A virtual platform is a functional representation of a digital system written entirely in software." - Cadence

Open-Source Virtual Platforms for Industry and Research

- Prototyping
- Develop & test models
- Embedded SW development

- Prototyping of new architectures
- Architecture exploration
- Improve simulation performance

Open-Source Virtual Platforms for Industry and Research

Many commercial solutions available

 \mathbf{O}

Solution we will talk about today:

Available on GitHub

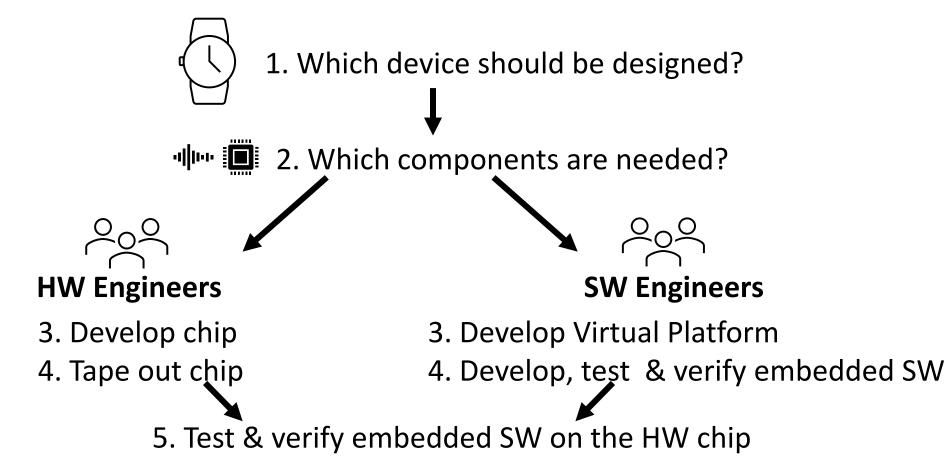
✓ Clone
 ✓ Play around
 ✓ Extend

Free and/or Open-Source Software

- Disclaimer: I am not a lawyer!
- "Free of charge" or "free as in freedom"?
- Licenses

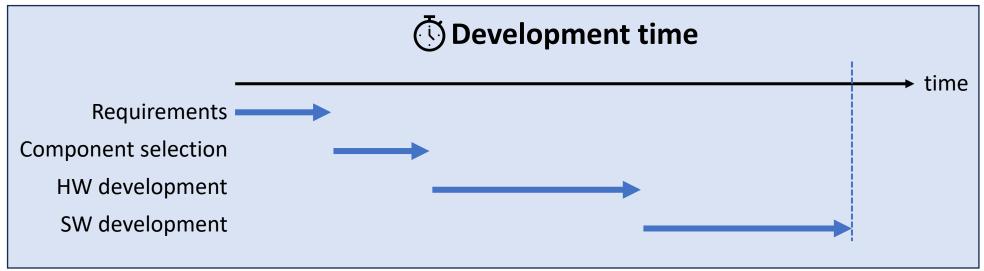
	Apache 2.0	GPLv2
Closed-source	Allowed	Not-allowed
Commercialization	Easy (no submarine patents)	Difficult
IP Protection	Easy (derived works under another license)	Difficult

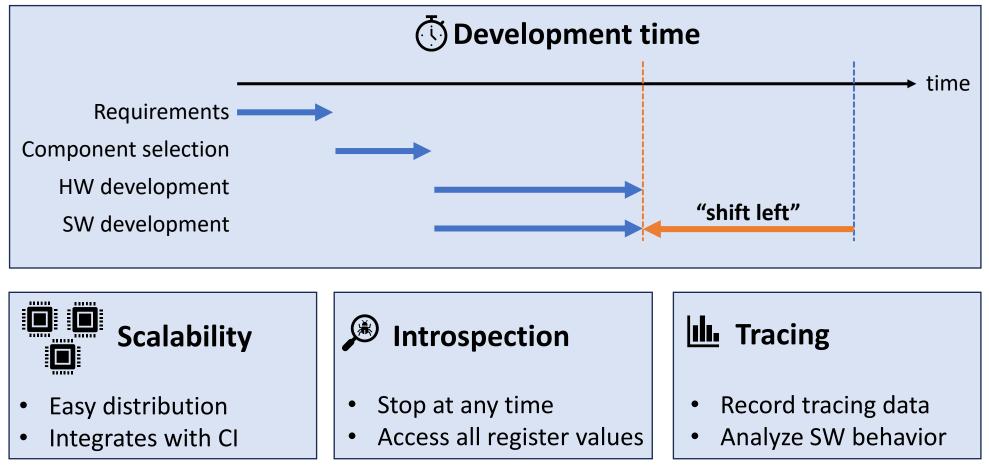
• Are Apache 2.0 and GPLv2 compatible? Maybe

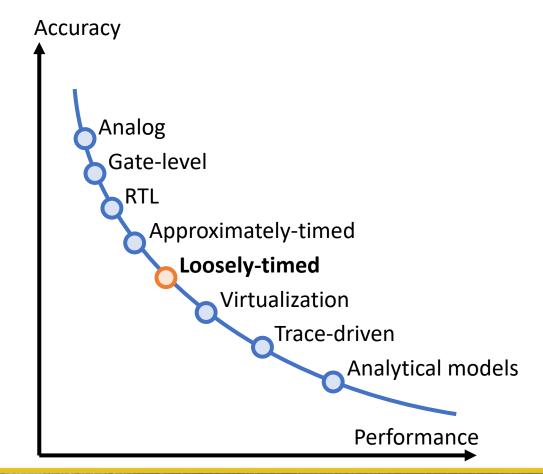


Virtual Platforms

A brief introduction


Why Do We Need Virtual Platforms?


Why Should You Use Virtual Platforms?


Why Should You Use Virtual Platforms?

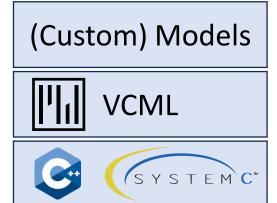
Abstraction Level

- Many different abstraction levels
- Tradeoff between performance and accuracy

Choose the level that fits your needs

Virtual Platform Design

Let's get started!


How to Start?

	Specification
--	---------------

- List of components
- Interface description
- Functional behavior

- Simulates the behavior
- Can execute target SW

VCML-based models to mimic the behavior of the SoC

Virtual Components Modeling Library – adds modeling primitives

Standardized "design and verification language" (IEEE Std. 1666™-2011)

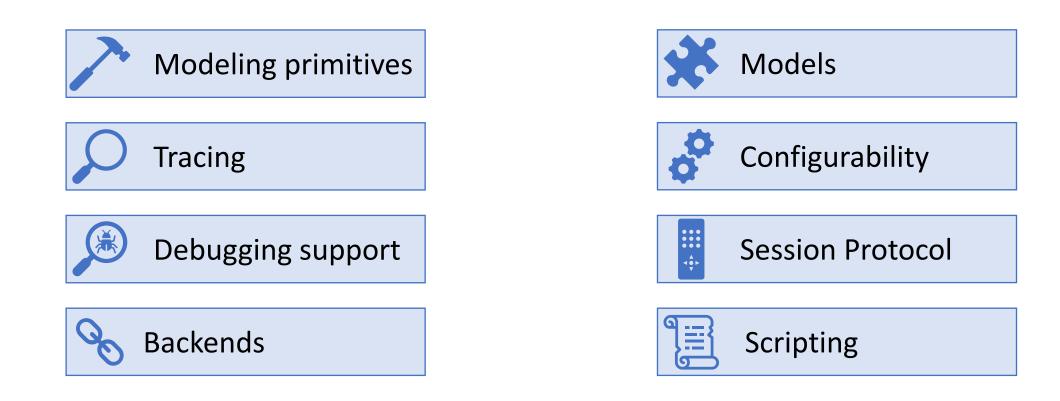
Why Do We Need a Modeling Library?

Concept of time
 Simulated parallelism
 Standardized interfaces (ports, TLM sockets)
 Hierarchy (modules)
 Models (e.g., buses)
 Frequently-needed parts (e.g., register model)
 Often-used communication-protocol implementations (SPI, CAN, I²C, ...)
 TLM logging/tracing, (parametrization, configuration)

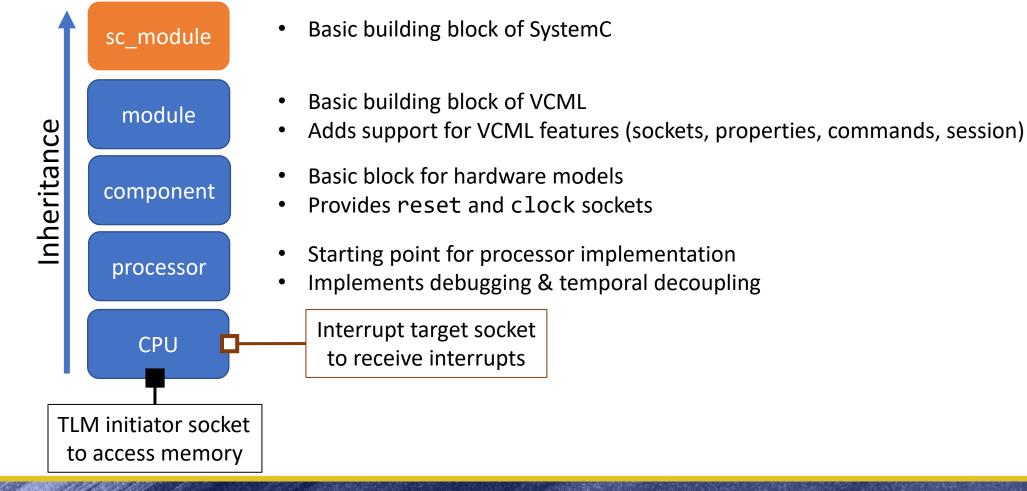
Virtual Components Modeling Library (VCML)

- Loosely-timed simulation framework based on SystemC TLM-2.0
- Apache-2.0 license
- Windows, Linux, MacOS
 - x86, arm64 CI builds
- Provides
 - Commonly used features (registers, peripherals, etc.)
 - Abstract protocols based on TLM-2.0 (interrupt, SPI, I²C, etc.)
 - Models (memory, memory-mapped buses, UARTs, etc.)
- Extensive unit test suite

https://github.com/machineware-gmbh/vcml


Why Should You Use VCML?

- Completely standard SystemC TLM-2.0 compatible
- Saves your time when construction a new VP
 - Reuse VCML features and models
- Supports all major Systems: Windows, Linux, MacOS, x86 and arm64
- Easy commercialization through Apache 2.0 license
- Example VPs available open-source (ARM and OpenRISC)
- Commercial support available through MachineWare


VCML-Highlights

Implementation of the CPU Model

SYSTEMS INITIATIVE

Target Software Debugging

- Full debugging support
 - Including OS

vcml::processor 🗗

• GDB/Lauterbach's Trace32

Remote GDB

Lauterbach's Trace32

......

VP

CE32 PowerView for RISC-V

- Multicore debugging
- OS awareness
- User-space debugging

Watch our Trace32 demo:

https://youtu.be/B6zys6_M-k4

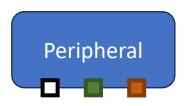
		E	3::Register		- 🗆	X										
XO	0	X16		S Stack		A										
X1	FFFFFFF80031F1A	X17	54494D45													
X2	FFFFFFF80E03F00	X18	1						[B	8::List]						- 🗆
X3	FFFFFFF80ED5558	X19	7	Ster	N	ver	Diverge	Return	🕈 Un	► Go	Break	Nº Mode	<i>₩</i> +		Find:	proc
X4	FFFFFFF80E0BF80	X20	FFFFFFF80ED636C	N Step			- 0					Piode	- 10			P
X5	FFFFFFE0012D3180	X21	0				addr/line		label		nemonic			comme		
X6	8	X22	FFFFFFFF80ED6018				FF800032C4				ddi		0,-0x27		×10,×10,	, - 632
X7	FFFFFFFF80C00418	X23	FFFFFFF80800008				FF800032C8				uipc	x1,0x5		; x1,		
X8 X9	FFFFFFFF80E03F10 FFFFFFF80ED61C0	X24 X25	80016038 80037E94	SP:FI	FFF::F	FFFFF	FF800032CC				alr	x1,-0x	CA(X1)	; X1	L,-202(x1	
X10	PFFFFFFF00ED01C0	X25 X26	00037E94	CD 51			50 FF800032D0									
X11	0000000200000000	X27	0				FF800032D0				.ld	x11,0x			L,8(x9)	
X12	1	X28	01E5				FF800032D2				uipc ddi	x10,0x		; ×10		624
X13	1293	X29	01E5				FF800032DA				uipc	x10,x10		а; : x1.	x10,x10,	,-034
X14	1293	X30	1				FF800032DF				alr	x1, -0x			,-220(x1	1)
X15	FFFFFFE03EFD9320	X31	FFFFFFD00406BC08				FF800032E2				.mv	x10,x9		, ^1	,-220(X1	-/
							FF800032E4				uipc	x1,0x5		; x1,	1511	
PC	FFFFFFF8000328E	PRIV	HS				FF800032E8				alr	x1,0x3			,984(x1)	
•							FF800032E0				.ldsp	x1,0x1			24(x2)	
				SP:FI	FFF::FF	FFFFF	FF800032EE	6442		С	.ldsp	x8,0x1			16(x2)	
								•								•

Open-Source Virtual Platforms for Industry and Research

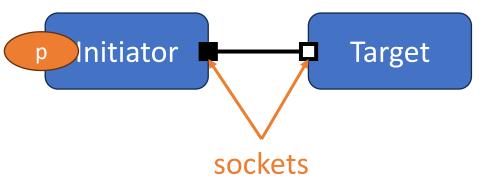
2023 DESIGN AND VERIFICATION CONFERENCE AND EXHIBITION EUROPEE LD YEAR ANNIVERSARY

SIM-V and Lauterbach Trace32 Like real hardware, just better

How to Implement Peripherals?


sc_module module component peripheral

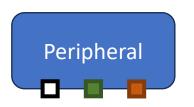
- Basic building block of SystemC
- Basic building block of VCML
- Adds support for VCML features (sockets, properties, commands, ...)
- Basic block for hardware models
- Provides reset and clock sockets
- Starting point for custom I/O peripheral models
- Adds support for registers



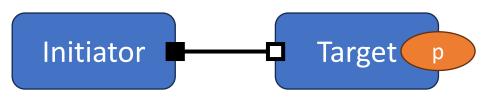
Interfaces

- Memory accesses
- Interrupt
- Communication/data transfer (e.g., SPI, I²C, ...)

Based on TLM blocking transports


Payload

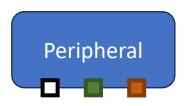
- Operation (R/W)
- Data pointer
- Attributes



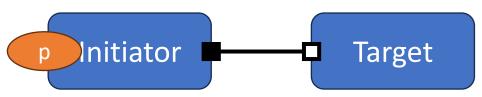
Interfaces

- Memory accesses
- Interrupt
- Communication/data transfer (e.g., SPI, I²C, ...)

Based on TLM blocking transports


Process payload

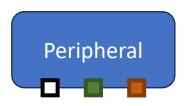
• Execute operation (R/W)



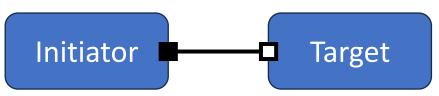
Interfaces

- Memory accesses
- Interrupt
- Communication/data transfer (e.g., SPI, I²C, ...)

Based on TLM blocking transports


Send payload back

• Analyze returned payload



Interfaces

- Memory accesses
- Interrupt
- Communication/data transfer (e.g., SPI, I²C, ...)

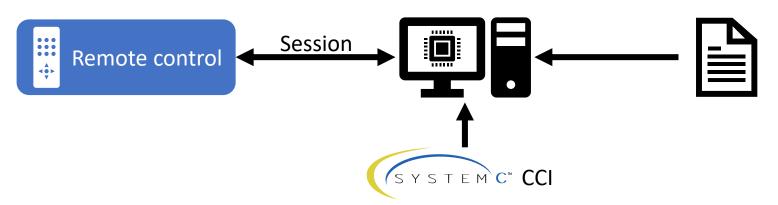
Based on TLM blocking transports

Implemented protocols

- CAN PCI
- Clock
 SD
- Ethernet Serial
- GPIO SPI
- I²C VirtlO

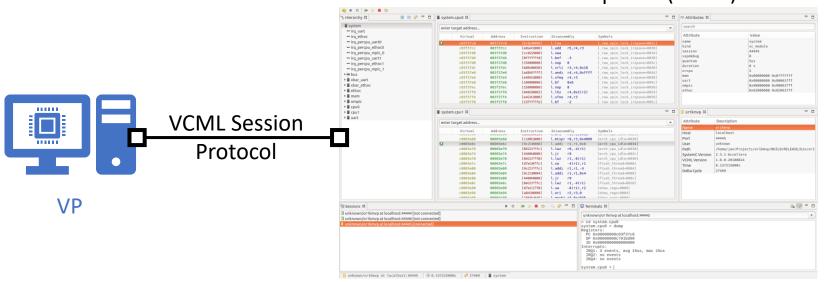
Predefined Peripherals in VCML

- Memory
- Interrupt controllers (ARM, RISC-V)
- Ethernet, SPI, I²C controller
- SD controller
- UARTs (e.g., PL011)
- Sensors (SPI/I²C-based)
- VirtIO (controller, console, RNG, block, ...)
- CAN (bridge & bus)

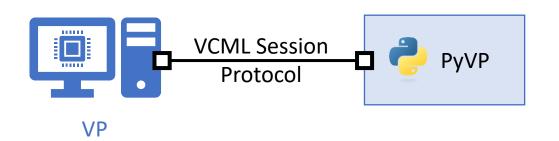


Configurability

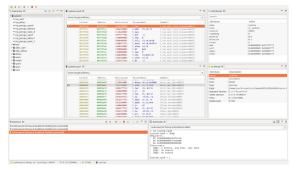
- VCML provides properties to configure modules
 - CCI-compatible
- LUA scripting
- Session protocol



Session


Virtual Platform Explorer (ViPER)

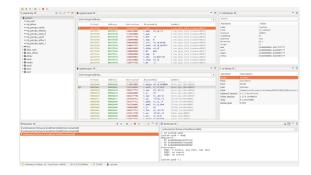
- Control the simulation
- Access/inspect models
- Open, TCP-based protocol

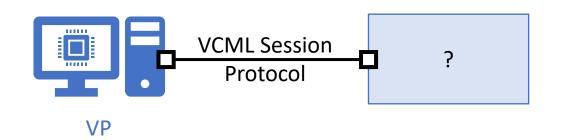


Session

Virtual Platform Explorer (ViPER) R R 📌 = D 🛢 outen.

- Python-based implementation of a Session client
- Use Python to script the simulation •





Session

Virtual Platform Explorer (ViPER)

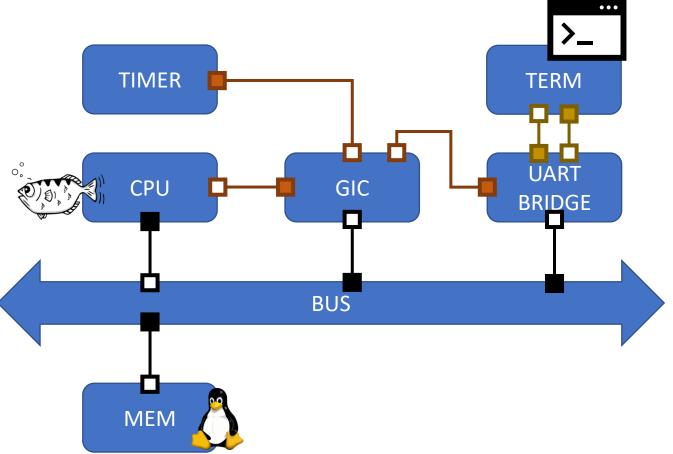
- Infinite number of use cases
- Very powerful interface
- Simple usage

Free Implementations

- OpenRISC 1000 Multicore Virtual Platform (OR1KMVP)
 - Embeds the open-source OR1KISS into vcml::processor
 - Simple interpreter-based instruction-set simulator (ISS)
 - https://github.com/janweinstock/or1kmvp
- An ARMv8 Virtual Platform (AVP64)
 - Embeds the ARMv8 unicorn implementation (QEMU-based) into vcml::processor
 - Dynamic-binary-translation (DBT)-based ISS
 - https://github.com/aut0/avp64

Commercial Implementations

• SIM-V


- Ultra-fast RISC-V simulator
- Supports state-of-the-art extensions
- Custom-instruction API
- SIM-A
 - Ultra-fast ARM Cortex-M simulator
- QBox
 - QEMU in SystemC TLM-2.0 through VCML

Full-System Integration

- * Instantiate models
- **Bind** sockets
- \succeq Start simulation

SW Development

Demo - Find the tutorial on the AVP64 GitHub page

https://github.com/aut0/avp64/tree/master/vscode

Summary

From spec to chip

Slides: https://mwa.re/vcml-tutorial

Summary

VP Be	SW Stack	
🕚 Development Time	Introspection	(Custom) Models
Scalability	III. Tracing	VCML

