

1

Obscure face of UVM RAL: To tackle verification

of error scenarios

Subhash Pai, Analog Devices, Bengaluru, India (subhash.pai@analog.com)

Lavanya Polineni, Analog Devices, Bengaluru, India (lavanya.polineni@analog.com)

Abstract—The register abstraction layer (RAL) in UVM library allows the users to write tests independent of

protocol interface with high degree of reusability. While handling error scenarios in complex designs, verification

engineers shy away from using RAL and tend to follow traditional approach of writing transaction based sequences

and also writing their own register models to verify DUT. Transaction based sequences when used for register

sequences pose code maintenance issues and have severe portability issues. Use of UVM register model for error

scenario is further hindered by the fact that whenever DUT response is error status (UVM_NOT_OK), UVM RAL

resets the register field values to zero which in turn prevents use of UVM register model for data comparison operation.

There is lack of literature discussing handling of error status in UVM RAL. In this paper we discuss a novel method of

using callback on UVM register model which allows verification engineers to use UVM RAL model for error conditions

without need of modification of the UVM base code. Different ways a design can respond to erroneous register

transactions are explored and it is explained how we can configure callback to model these design behaviors. The

callback method presented in the paper is highly reusable and can be used across different designs with ease. The paper

also describes methods and guidelines for coding error scenarios with RAL APIs. These guidelines will help the user to

avoid common pitfalls for transaction sequences. The methods and guidelines discussed in the paper can broadly be

applied to error scenarios in communication protocols.

Keywords—Error Modeling; UVM RAL;Callback.

I. INTRODUCTION

Verification engineers typically use UVM RAL for standard register verification and use transaction based

sequences whenever error conditions are to be passed as a part of the transaction. Transaction based approach

requires careful editing of sequences for register field changes and also poses severe reusability issues when

communication interface is changed while functionality remains largely the same. Use of configuration object to

pass error information of the protocol is also quite common but it is difficult to use this approach for more complex

scenarios. Sequence item and Configuration object create two different streams for the same data and

synchronization between the two streams becomes complicated for complex scenarios like buffered or pipelined

transactions. Use of UVM RAL for error scenarios is further hindered by the fact that for error condition where the

status is UVM_NOT_OK, the register fields are reset to zero value by UVM register model. Development of custom

register modeling for error transactions can lead to increased coding effort and requires thorough review.

II. UVM RAL APPROACH FOR ERROR SCENARIOS

A. Register Verification through UVM RAL

Typical register verification scenarios involve verification environment trying to access DUV (Design under

Verification) registers through serial or parallel interface. Serial/Parallel protocol interface will provide the register

address and data. Some protocols can also provide additional information like device address, data width, etc. While

performing the register operations there can be errors like writing into read only register, accessing non-existent

registers, protocol violations like framing error or performing register operations when the DUT is under error state.

B. Passing Error information through UVM RAL

Additional protocol data for the register operation can be passed on to the driver either through configuration

object or can be transferred to the driver using the extension mechanism of UVM. Default value for extension

argument is null i.e. no additional information is sent. This extension data is processed by the register adapter. It is

possible to use the same extension mechanism to transfer the error information for the register operation. We

recommend use of extension mechanism for transferring the error information due to following reasons:

2

1) Configuration objects are typically used for storing static and quasi-static data where as error transactions

are dynamic in nature and they are often closely tied to the transaction. Mapping of the error in configuration to

the transaction in sequence item can get complicated for complex protocol e.g if we have pipelined or buffered

transactions. Also there can be confusion arising out of splitting the data into two streams viz. sequence item and

configuration object.

2) In the UVM extension mechanism, error information is sent along with register data and hence they are

very tightly coupled. All the information is captured only in the sequence item and hence can be easily used in

pipelined and buffered transactions.

In the sequence where we perform register transactions, we can create a new object that can hold additional

protocol and error information. Figure 1 shows example of extension argument to RAL API that can be used to

transfer the extra information.

Example for passing device address and insertion of frame error is shown in Figure 2. In the reg2bus function of

the adapter we need to use get_item() function to extract the additional information and then this additional

information is mapped to items in the protocol sequence item.

 Using a simple enum for the error variable would limit the users to a single kind of error. Verification engineers

would often need to create protocol transaction with multiple errors and there can be different priority for different

errors e.g. if the packet has CRC error as well address range error then the DUV needs to respond with the behavior

for CRC error. We recommend users to create a single variable where each bit would represent one kind of error.

Figure 3 shows an example.

Figure 1. Passing error information through extension argument

Figure 2. Decoding of error transaction in reg2bus

3

C. DUT response for different error scenarios

 Design can respond to erroneous register writes/reads with three possibilities:

1) DUT completely ignores the erroneous transaction and no data/responses are sent. This can happen when

there are multiple slaves on the same bus and responding to the transaction even with status set to error can lead

to slave response corrupting response of correctly addressed slaves on the bus. e.g: CRC error, framing error.

2) DUT accepts and responds to the transaction like a normal transaction but the status is set to error .This can

happen when the device is in error state and we would want to perform register access as a part of the debug.

3) DUT ignores the transaction but error status is sent.This can happen when the register transaction tries to

write into read only register or tries to access restricted/unimplemented registers.

D. UVM RAL Modeling for Error Transaction

 Whenever DUT sends error status (UVM_NOT_OK), UVM RAL resets the mirrored value of the register

fields to zero. This behavior is highly undesirable since we can no longer rely on the UVM register model to

perform data comparison. The desired behavior is, for condition (1) and (3) register model should maintain the

old value and for (2) the register model should be updated the DUT value. One solution to this problem would be

to change the UVM library code but it is highly undesirable. This UVM issue can be resolved with UVM register

callback approach. The solution essentially consists of defining and registering the callback and updating the

callback based on transaction response.

Figure 4. Sequence item containing the error variable

Figure 3. Representation of different errors in the bits

Figure 5. DUT Error Responses

4

 D.1. Define and Register Callback:

 Define a callback class based on uvm_reg_cbs. Callback would contain additional data on transaction status

(erroneous or normal transaction) and also whether DUV would ignore or process the bus value.Callback method

post_predict is often used to model quirky registers and it has the advantage that it works for both active and

passive prediction[2]. Function predict of the uvm_register_field is called whenever there is a transaction on the

register field and the mirrored value of the register field needs update. For error transactions i.e. status is

UVM_NOT_OK the mirrored value for the register field gets reset to zero. The predict function also calls

post_predict function of the callbacks that have been registered with uvm_reg_field. In error scenarios there can

be cases where we would want to update the fields based on the bus value or maintain previous value of the field.

Since for error transactions, field_value argument of the post_predict function gets reset to zero, callback object

stores the bus value of the transaction in a variable called bus_value.Value of variables update_reg,

error_condition and bus_value are updated in the register adapter.

Figure 6. Definition of Callback

5

Register this callback object for all uvm_reg_fields. We can instantiate the callback in the adapter or the

verification environment class. Please note that the callback needs to registered with field and not the registers.

 D.2. Update Callback based on Transaction Error

 Protocol monitor sends the transaction oberved on the bus lines to the register adapter. Function bus2reg of

the register adapter processes the bus data and whenever any error has been observed in the transaction, status is

updated to UVM_NOT_OK and the error_condition bit is set. Value of update_reg would be assigned based on

the kind of transaction error . Note that register adapter needs to provide callback with the transaction data

received on the bus since UVM register model resets field_val to zero instead of bus value for error conditions.

Figure 8. Handling of different DUT responses for error scenarios

Figure 7. Instantiation and Registering of Callback

6

III. CONCLUSIONS

With callback method and UVM extension mechanism we could easily use UVM RAL model for error

transactions. This greatly reduces the verification effort required to verify error scenarios for all the interfaces used

in the design. Further this code is generic in nature and can be reused for any communication protocol in future

projects. We recommend verification engineers to use UVM RAL even for register error scenarios for improved

reusability and ease of code maintenance.

REFERENCES

[1] UVM User guide, Accelera

[2] M. Litterick, M. Harnisch, “Advanced UVM Register Modeling – There’s More Than One Way to Skin a Reg,” DVCon 2014.

Figure 9. Handling DUT Error response in bus2reg

