Novel GUI Based UVM Test Bench Template

Builder

Vignesh Manoharan

Aeva Inc.
555 Ellis St. Mountain View, CA 94043

2022

E)EESKBPQAAPJC)\/ET?H’N:IVTKDPJ“

DVL

CONFERENCE AND EXHIBITION

FEBRUARY 28 - MARCH 3, 2022

Abstract

Adoption rate of Universal Verification
Methodology (UVM) is increasing day
by day across industry and the need
for building new Verification Intellectual
Property (VIP) or testbench is in great
demand. Writing effective and
structured UVM testbench from
scratch is cumbersome most of the
time and following a standard structure
with provision for better re-usability
across projects is also challenging.
What if the time taken for initial
development cycle is reduced to
minutes instead of days with the help
of a Graphic User Interface (GUI) t
build the verification component
templates? This poster presents an
overview about the GUI interface used
to develop the individual UVM
components or the entire VIP
templates loaded with features to
customize and configure as per the
user requirements.

Deep Dive Into UVM Template Generator

Operation

The tool is built using Python Tkinter framework to

create the GUI layouts in grid fashion mechanism.

All text processing and editing are done using

python scripting. The tool helps in:
Building pure UVM template codes

 Building single UVM components or complete
UVM testbench and architecture

* Building Multi Agent, Multi Monitor,
Scoreboard based Environments

* Building Multi-Environments based flow
targeting complex SOC's [System on Chip]
scenarios

* Integrating Agents, Monitors, Scoreboards into
already existing Environment and helps i
integration between environments

» All the codes generated from this tool uses
‘Natural Docs’ formatting for easier
documentation

Multi

Creating Single UVM Components

The moment user launches the tool, the GUI
pops-up with two options, namely 1. create

“Single UVM Component”, 2. “Single & Multi Env
VIP" as shown in Figure 1.

UVM Template Generator

Hello vigﬁesh! Choose What You Want To Create
~ Single UVM Component
~ Single & Multi Env VIP

L et

Figure 1. Initial Tool Layout

Once the user clicks the single component radio
button, tool lists out multiple objects and
component options to be created namely:
sequence_item, agent, environment etc. as shown
in Figure 2. The user can choose whichever
component or object they want and create the
corresponding templates by clicking the ‘Generate
Code’ button. Based on the component the user
chooses, the tool displays required customization
options.

UVM Template Generator

- Single UVM Component
Enter The Component/Object Name You Wanted To Create:

Which Single Component/Object You Wanted To Create:
- Sequence Item
- Sequence
- Sequencer
- Driver
- Monitor
- Agent
- Scoreboard
- Environment
- Test
- Interface

Figure 2. Single UVM Component Tool Layout

EEEEEEEEEEEEEEEEEEE

www.PosterPresentations.c
om

Interface Creation: The tool provides the user

with multiple options to develop an interface file

such as:

 Creating a default interface with an empty shell

* A user defined interface via the GUI as shown
in Figure 3.

* Loading a spreadsheet

Hello vignesh.manoharan! Choose What You Want To Create

Enter The Component/Object Name You Wanted To Create:

Which Single Component/Object You Wanted To Create:
Sequence Item

Agent
Scoreboard
Environment
Test

+ Interface

What Type Of Interface You Wanted To Create: User Defined Interface -|

Signal Name Signal Type Packed Elements Un Packed Elements Clocking Block Modport
addr logic 32 64, ADDR_WIDTH mon_cb, input,drv_cb, mon_mp, input,drv_mp,
data reg 32,128 "DATA_WIDTH mon_cb, input,drv_cb, mon_mp,clocking,drv_;
driveclock wire-clk hon_cb,posedge,drv_#mon_mp,input,d:v_mp,

NEXT INTERFACE CONFIG ‘ DONE INTERFACE CONFIG

Figure 3. User Defined Interface Details Filled via GUI

Agent Creation: When the user wants to create
an agent, the tool further provides options for the
user to enter the number of driver-sequencers or
monitors they want with required names as shown
in Figure 4. The tool generates the necessary
code templates which are compile clean and ready
to use. As soon as the code is generated, the tool
goes to the default/initial layout.

¢« Single UVM Component
Enter The Component/Object Name You Wanted To Create:

generic

Which Single Component/Object You Wanted To Create
Sequence Item

© Sequence

© Sequencer

- Monitor
« Agent
Enter Required Number Of Driver~Sequencer:

1l,master
Enter Required Number Of Monitors: 1, mmon

~ Scoreboard

~ Environment

- Test

- Interface

Choose The Type Of Interface For master Driver: Click Drop-Down For Options —

Load Interface

Figure 4. Component Specific Customization Layout

Creating Complete UVM VIP

The moment user clicks the “Single & Multi Env VIP”
from the initial layout, the tool provides a couple of
options as shown in the Figure 5, namely

1. GUI Approach

2. Load Spreadsheet Approach

The complete GUI based approach tool layout is

shown in Figure ©.

UVM Template Generator

Create Multi Cluster VIP Using:

~ GUI Approach
- Load Spreadsheet Approach

Enter Env Name: top,alocha

How Many Sub Env You Want To Create: 1,maui

How Many Agents You Want To Create: |2,master,slave
How Many Monitors You Want To Create:
How Many Scoreboards You Want To Create:
How Many Env Interface To Create:
Specify The Environment Directory Path:

Figure 6. GUI Approach tool layout wrth partraI f|IIed in data

ENV SETUP NEXT ENV CFG

As the user starts filling in the details about the
environment to be created, tool intuitively brings up
the required widgets to provide necessary details.
For example, when the user starts filling the details
about the agent, the tool provides input widgets to
enter the details about driver, agent level monitor
and the interface information as shown in Figure 7.

| Agent Configuration Window A -0 X
Enter Agent Name: master

Enter Required Number Of Driver~Sequencer: Enter no. of drivers,lst driver name,..,nt
Enter Required Number Of Monitor's:

Choose The Type Of Interface: Click Drop-Down For Options -

Figure 7. Popped up tool window for acquiring agent details

Once the user enters all the required information
about the environment to be built, the user will click
the "Env Setup" button found at the bottom of the
tool window. By clicking that button, the tool
generates a matrix table with all the monitors,
scoreboards and provide the option for user to make
the necessary connection as shown in Figure 8.

.2

ot

top,aloha,master, ruby-top,aloha,asch

Click Drop-Down For Options — l

RETURN PORT IADD PORT ISTORE PORT

Figure 8. Monitor-Scoreboard Connectivity Matrix table

Once the user has provided the required details
about all the environments and the monitor-
scoreboard connectivity information, the user needs
to click the “Done Env Cfg” button as shown in
Figure 9 to Instruct the tool that the user has
confirmed all the testbench setup and it is safe to
move ahead.

UVM Template Generator

Enter Env Name:
How Many Sub Env You Want To Create:

How Many Agents You Want To Create: 2,volcano, sea

How Many Monitors You Want To Create: 1,nrkmon
How Many Scoreboards You Want To Create:
How Many Env Interface To Create:
Specify The Environment Directory Path:

Figure 9. Environment confrguratron confrrmatron layout

After confirming the environment configuration, the
user then clicks the “Generate Code” button as
shown in Figure 10. This will instruct the tool to build
the testbench codes, necessary files, and directory
structures.

kawai,nrkaw

PREV ENV CFG DONE ENV CFG

UVM Template Generator

Enter Env Name:
How Many Sub Env You Want To Create:

How Many Agents You Want To Create: 2,volcano, sea

How Many Monitors You Want To Create: 1,nrkmon
How Many Scoreboards You Want To Create:

How Many Env Interface To Create:

Specify The Environment Directory Path: |

Figure 10. Final tool layout before proceeding to generate code

In the complete UVM VIP tool window, when the user
chooses the “Load Spreadsheet Approach”, the tool
pops up with the layout as shown in Figure 11.

] UVM Template Generator
| se] 1 S 1l ouavn | 1

Choose the EnvConfig Spreadsheet To Load: Right Click To Load-Left Click To Enter

PARSE SPREADSHEET

Figure 11. Load spreadsheet tool layout

In this mode, the user can enter the details in a tool
understandable spreadsheet format as shown in the
Frgure 12

aaaaa
aaaaaaaaa

3:./Uvm_Template_Gen
eeeeeeeeeeeeeeeeeeeeee
lllll
3:./Uvm_Template_Generator_Interface_Declaration_Sample.xlsx
eeeeeee
lllll
3:./Uvm_Template_Generator_Interface_Declaration_Sample.xlsx

aaaaaaaaaaaaaaaaaaaaaaaaaaaa

Figure 12. Spreadsheet example which the tool understands

Novel Stitch, Create & Stitch Feature

The art of developing a testbench doesn't happen in a
single day but is a continual long-term process. For
example, on day 1, the user might just need to build
the environment skeleton. On day 2, the user might
end up adding few other components namely agents
and environment level monitors. Later the user adds
the required scoreboard and connectivity. How does
this tool take care of such cases? Well, the tool
provides couple of novel features namely, “Stitch’,
“‘Create & Stitch” modes which helps in incremental
testbench development process.

Stitch Mode: This mode comes in handy if the user
has already created an environment with the tool
which takes care of generating different kinds of clock
sources and now the user wants to build a block level
bench which is going to take care of register
programming. The user needs to launch the tool,
generate the required block level testbench skeleton
and then, using the “Stitch mode”, the user can stitch
the other sub-environments into this block level
environment. The user needs to enter the required
number of sub-env's wanted to be stitched and add
the sub-env's names appended with “__s” as shown in
the Figure 13.

Enter Env Name:
How Many Sub Env You Want To Create: [L,clock__s

top, reg_env

How Many Agents You Want To Create: 1,master
How Many Monitors You Want To Create: 1, rmon
How Many Scoreboards You Want To Create: 1l,rsch
How Many Env Interface To Create:

Specify The Environment Directory Path: pwd

Figure 13. Novel Stitch method for adding existing environment

Create & Stitch Mode: If, in the above block level
environment, the user wants to add a new agent, the
user can do so by launching the tool and loading the
block level environment using “Load Spreadsheet”
Mode. Next, the user can add the details about new
agent i.e., number of agents followed by the name of
agent appended with “__¢”, as shown in Figure 14
and then clicking the "Generate Code" button.

NEXT ENV CFG

The tool knows the user is adding new components
onto an existing block level environment, so the tool
generates only the new components and then stitches
them onto the already existing environment in all the
necessary places.

Enter Env Name:

How Many Sub Env You Want To Create:
How Many Agents You Want To Create:

How Many Monitors You Want To Create:
How Many Scoreboards You Want To Create:
How Many Env Interface To Create:
Specify The Environment Directory Path:

Figure 14. Novel Create and Stitch method for adding new agents |nto exrstrng environment

ENV SETUP NEXT ENV CFG

The granularity level at which the work can start from

can be:

* Adding single or multiple port connectivity’s
between monitor and scoreboard

* Adding new environment level monitor's and
scoreboard’s in already existing environment with
updated connectivity

* Adding driver/monitor inside already existing
agents and adding new agents into existing
environment

* Adding an environment using create & stitch or
just stitch process into an already existing
environment

1 ‘ifndef INC_MASTER_AGE

2 “define Zﬂi_“Li'E3_;GEZT_,.

3

4 cla master_agent ex luvm_config_db# master agent config master_agent_cfg

8 master_driver

13 ‘uvm:component_utlls_;nd

1 “ifndef GENERIC_ENVIRONMENT
~ 2 ‘define I ENERIC_ENVIRONMENT
3
4 class generic_envir nt extends
~ 5 mon ito mon_m
_ 6 scb reboard scbh_scb
__ 7 mast gent master_agt
8 slave_agent slave_agt([]
9 gener nv ent_config gener t_cfg
10
11 “uvm_component_utils_begin(g t)
12 “uvm_field_int(generic_env_id, UVM_ALL)
13 “uvm_component_utils_end
14 endclass: ge ic_enviro t
15
16 function void gener t::build_phase(ph phase)
17 :
18 slave_agt [g t_cfg.no_of_sl gt]
sk f r (t 0; 1 < generic_e ent_cfg.no_of_sl gt) beg
204 sfo t(g nt_in t name, "slave agt[Od} i);
w217 1f (ge _enviro t cfg.slave_agent_ fg[].is_active) slave_agt[i] = slave_agent::type_id::create(agent_inst_name, this);
22'8 uv f g db#(t et(this { g nt inst_name, '”}, "slave_agt_id", 1i);
23 d
24 ndfunction: build_phas
25|
26 fu dg t::connect_phase(uvm_phase phase);

eric_environment::
27 if (generic_environment_cfg.scb_is_active && generic_environment_cfg.master_agent_cfg.master_is_active) begin
28 master_agt.master_mon.master_abc_analysis_port.connect(scb_scb.sch_master_abc_analysis_export);

Environment Template code

generic_environment_config generic_environment_cfg;
local uvm_tlm_analysis_fifo #(master_master_sequence_item_base) master_master_m| 7 generic_environment_config generic_environment_cfg;

*uvm_component_utils_begin(master_scoreboard)

17 endfunction: new

724 Nendif //INC_MASTER SCOREBOARD SV | 24 ‘endif

Code difference between FIFO based and Wrrte function-based connectivity in Scoreboard

__1 inte f generic nterface (nput wire dr clock) ; 1 package generic_ _packag
2 1 ogi [3:0] addr [31:0] [0]; 2 import _pkg
3 reg [O] d ta [15:0] [1f 3]; i nclude Vm_mé .svh
4 re bl =
s 9 5 mport generic_seq_item_packag
6 clocking mon_cb@(posedge driveclock); s Rinclude “siavelagent fig s
7 put addr; 8 ° clude taste__ Jeﬁ?_ ig. :
8 put d ta; o
__2_ nput nable; 10 clude eneric_enviro nt_config
10 ndclocking: mon_cb 11
11 12 clude "slave_monit
L1312 BC 1 cking drv_cb@(negedge driveclock); 13 “include aster_monit
13 output addr; 14
14 output data: 15 ‘include "slave_drive
15 output enable; 16 “include "slave_sequencer
"16 endclocking: drv_cb }%_\ Ctuge “afte —?rlv s
—17— I clude aster_sequence
_18 quport mgn_mp(g ~ 20 ‘include lave_agent.sv'
19 input driveclock, clocking mon_cb T Rinclnda ter_agent.sv
20 i) : 22 -
21 23 ‘include "mon_monitor.sv
22 modport d p(24 ‘include “scb_scoreboard. s\
23 input dr clock, clocking drv_cb E25
24) _26 ‘include "generic_environment.sv"

: s
" 27 Bndpackage: ge ic_env_package

Auto generated package code

‘éguéndinterface' generic_interfa
Interface code snrppet

Performance Evaluation

Novel GUI Based UVM
testbench Template

Comparison Points Easier UVM Open Titan

Code UVM

Generator Generator Builder
License Open source Open source Open source
Support GUI No No Yes
Generation of UVM class code Yes Yes Yes
Generation of complete UVM No Yes Yes
environment
Generation of multi-instance of No No Yes
agents, monitors, environments,
etc. for complex testbench
Smart monitor and scoreboard No No Yes
connectivit

Environment Integration

The UVM template generator provides the user to
create any component template or the entire VIP
dynamically in matter of minutes. The generator helps
in standardization of code development and re-
usability of the code across the projects and helps in
complete integration of the verification collateral. With
the template generator's unique ‘Create & Stitch’
feature, the tool can add new components, add
connection between components or append sub
environment VIPs to the already existing code and
help in incremental enhancement of the testbench.
Hence, this tool indeed improved Vverification
productivity and showcased its performance in
complex streamlined products.

