
TEMPLATE DESIGN © 2008

www.PosterPresentations.c
om

Novel GUI Based UVM Test Bench Template
Builder

Vignesh Manoharan
Aeva Inc.

555 Ellis St. Mountain View, CA 94043

Abstract
Adoption rate of Universal Verification
Methodology (UVM) is increasing day
by day across industry and the need
for building new Verification Intellectual
Property (VIP) or testbench is in great
demand. Writing effective and
structured UVM testbench from
scratch is cumbersome most of the
time and following a standard structure
with provision for better re-usability
across projects is also challenging.
What if the time taken for initial
development cycle is reduced to
minutes instead of days with the help
of a Graphic User Interface (GUI) to
build the verification component
templates? This poster presents an
overview about the GUI interface used
to develop the individual UVM
components or the entire VIP
templates loaded with features to
customize and configure as per the
user requirements.
Deep Dive Into UVM Template Generator

Operation

Creating Complete UVM VIP

Sample Code Snapshots

Performance Evaluation

Figure 1. Initial Tool Layout

Figure 2. Single UVM Component Tool Layout

Figure 3. User Defined Interface Details Filled via GUI

Figure 4. Component Specific Customization Layout

The tool is built using Python Tkinter framework to
create the GUI layouts in grid fashion mechanism.
All text processing and editing are done using
python scripting. The tool helps in:
• Building pure UVM template codes
• Building single UVM components or complete

UVM testbench and architecture
• Building Multi Agent, Multi Monitor, Multi

Scoreboard based Environments
• Building Multi-Environments based flow

targeting complex SOC's [System on Chip]
scenarios

• Integrating Agents, Monitors, Scoreboards into
already existing Environment and helps in
integration between environments

• All the codes generated from this tool uses
‘Natural Docs’ formatting for easier
documentation

Creating Single UVM Components

The moment user launches the tool, the GUI
pops-up with two options, namely 1. create
“Single UVM Component”, 2. “Single & Multi Env
VIP” as shown in Figure 1.

Once the user clicks the single component radio
button, tool lists out multiple objects and
component options to be created namely:
sequence_item, agent, environment etc. as shown
in Figure 2. The user can choose whichever
component or object they want and create the
corresponding templates by clicking the ‘Generate
Code’ button. Based on the component the user
chooses, the tool displays required customization
options.

Interface Creation: The tool provides the user
with multiple options to develop an interface file
such as:
• Creating a default interface with an empty shell
• A user defined interface via the GUI as shown

in Figure 3.
• Loading a spreadsheet

Agent Creation: When the user wants to create
an agent, the tool further provides options for the
user to enter the number of driver-sequencers or
monitors they want with required names as shown
in Figure 4. The tool generates the necessary
code templates which are compile clean and ready
to use. As soon as the code is generated, the tool
goes to the default/initial layout.

The moment user clicks the “Single & Multi Env VIP”
from the initial layout, the tool provides a couple of
options as shown in the Figure 5, namely
1. GUI Approach
2. Load Spreadsheet Approach
The complete GUI based approach tool layout is
shown in Figure 6.

Figure 5. Complete UVM VIP Development tool Layout

Figure 6. GUI Approach tool layout with partial filled in data

As the user starts filling in the details about the
environment to be created, tool intuitively brings up
the required widgets to provide necessary details.
For example, when the user starts filling the details
about the agent, the tool provides input widgets to
enter the details about driver, agent level monitor
and the interface information as shown in Figure 7.

Figure 7. Popped up tool window for acquiring agent details

Once the user enters all the required information
about the environment to be built, the user will click
the "Env Setup" button found at the bottom of the
tool window. By clicking that button, the tool
generates a matrix table with all the monitors,
scoreboards and provide the option for user to make
the necessary connection as shown in Figure 8.

Figure 8. Monitor-Scoreboard Connectivity Matrix table

Once the user has provided the required details
about all the environments and the monitor-
scoreboard connectivity information, the user needs
to click the “Done Env Cfg” button as shown in
Figure 9 to instruct the tool that the user has
confirmed all the testbench setup and it is safe to
move ahead.

Figure 9. Environment configuration confirmation layout

After confirming the environment configuration, the
user then clicks the “Generate Code” button as
shown in Figure 10. This will instruct the tool to build
the testbench codes, necessary files, and directory
structures.

Figure 10. Final tool layout before proceeding to generate code

In the complete UVM VIP tool window, when the user
chooses the “Load Spreadsheet Approach”, the tool
pops up with the layout as shown in Figure 11.

Figure 11. Load spreadsheet tool layout

In this mode, the user can enter the details in a tool
understandable spreadsheet format as shown in the
Figure 12.

Novel Stitch, Create & Stitch Feature

Figure 12. Spreadsheet example which the tool understands

The art of developing a testbench doesn’t happen in a
single day but is a continual long-term process. For
example, on day 1, the user might just need to build
the environment skeleton. On day 2, the user might
end up adding few other components namely agents
and environment level monitors. Later the user adds
the required scoreboard and connectivity. How does
this tool take care of such cases? Well, the tool
provides couple of novel features namely, “Stitch”,
“Create & Stitch” modes which helps in incremental
testbench development process.

Stitch Mode: This mode comes in handy if the user
has already created an environment with the tool
which takes care of generating different kinds of clock
sources and now the user wants to build a block level
bench which is going to take care of register
programming. The user needs to launch the tool,
generate the required block level testbench skeleton
and then, using the “Stitch mode”, the user can stitch
the other sub-environments into this block level
environment. The user needs to enter the required
number of sub-env's wanted to be stitched and add
the sub-env's names appended with “__s” as shown in
the Figure 13.

Figure 13. Novel Stitch method for adding existing environment

Create & Stitch Mode: If, in the above block level
environment, the user wants to add a new agent, the
user can do so by launching the tool and loading the
block level environment using “Load Spreadsheet”
Mode. Next, the user can add the details about new
agent i.e., number of agents followed by the name of
agent appended with “__c”, as shown in Figure 14
and then clicking the "Generate Code" button.

The tool knows the user is adding new components
onto an existing block level environment, so the tool
generates only the new components and then stitches
them onto the already existing environment in all the
necessary places.

Figure 14. Novel Create and Stitch method for adding new agents into existing environment

The granularity level at which the work can start from
can be:
• Adding single or multiple port connectivity’s

between monitor and scoreboard
• Adding new environment level monitor’s and

scoreboard’s in already existing environment with
updated connectivity

• Adding driver/monitor inside already existing
agents and adding new agents into existing
environment

• Adding an environment using create & stitch or
just stitch process into an already existing
environment

Agent Template code

Environment Template code

Code difference between FIFO based and Write function-based connectivity in Scoreboard

Interface code snippet Auto generated package code

Comparison Points Easier UVM
Code

Generator

Open Titan
UVM

Generator

Novel GUI Based UVM
testbench Template

Builder
License Open source Open source Open source

Support GUI No No Yes
Generation of UVM class code Yes Yes Yes
Generation of complete UVM

environment
No Yes Yes

Generation of multi-instance of
agents, monitors, environments,

etc. for complex testbench

No No Yes

Smart monitor and scoreboard
connectivity

No No Yes

Incremental testbench
development

No No Yes

Environment Integration No No Yes
Open-source documentation

formatting
No No Yes

Summary
The UVM template generator provides the user to
create any component template or the entire VIP
dynamically in matter of minutes. The generator helps
in standardization of code development and re-
usability of the code across the projects and helps in
complete integration of the verification collateral. With
the template generator's unique ‘Create & Stitch’
feature, the tool can add new components, add
connection between components or append sub
environment VIPs to the already existing code and
help in incremental enhancement of the testbench.
Hence, this tool indeed improved verification
productivity and showcased its performance in
complex streamlined products.

