
Novel GUI Based UVM Test Bench Template
Builder

Vignesh Manoharan
Aeva Inc.

555 Ellis St. Mountain View, CA 94043
+1-858-717-2486, vignesh@aeva.ai

Abstract- Adoption rate of Universal Verification Methodology (UVM) is increasing day by day across industry and the

need for building new Verification Intellectual Property (VIP) or testbench is in great demand. Writing effective and
structured UVM testbench from scratch is cumbersome most of the time and following a standard structure with provision
for better re-usability across projects is also challenging. What if the time taken for initial development cycle is reduced to
minutes instead of days with the help of a Graphic User Interface (GUI) to build the verification component templates?
This abstract presents an overview about the GUI interface used to develop the individual UVM components or the entire
VIP templates loaded with features to customize and configure as per the user requirements.

I. INTRODUCTION

 Most often there is not standard structure, template or outline that user follows while developing any of the VIP
components or verification environment codes. In general, engineers tend to carry forward the existing files from other
projects and try to edit the information, which leads to non-standard code development across projects. Although there
are some existing template generators which uses command line or spreadsheets, it is noticed that with increased
number of parameters and complex requirements, using these generators have become more cumbersome than helpful.

 This GUI based UVM template generator allows the user to create any component template dynamically in matter
of minutes with lots of customization. This approach also brings in standardization of code development across
projects and business groups as well as helps to bring up VIP’s initial development cycle at a faster pace.

II. DEEP DIVE INTO UVM TEMPLATE GENERATOR OPERATION

A. How the tool is implemented and what is supports
 The tool is built using Python Tkinter framework to create the GUI layouts in grid fashion mechanism. All text
processing and editing are done using python scripting. The tool helps in:

• Building pure UVM template codes
• Building single UVM components or complete UVM testbench and architecture
• Building Multi Agent, Multi Monitor, Multi Scoreboard based Environments
• Building Multi-Environments based flow targeting complex SOC's [System on Chip] scenarios
• Integrating Agents, Monitors, Scoreboards into already existing Environment and helps in integration

between environments
• All the codes generated from this tool uses ‘Natural Docs [3]’ formatting for easier documentation

B. Creating Single UVM Components

 The moment user launches the tool, the GUI pops-up with two options, namely 1. create “Single UVM Component”,
2. “Single & Multi Env VIP” as shown in Figure 1.

Figure 1. Initial Tool Layout

 Once the user clicks the single component radio button, tool lists out multiple objects and component options to be
created namely: sequence_item, agent, environment etc. as shown in Figure 2. The user can choose whichever
component or object they want and create the corresponding templates by clicking the ‘Generate Code’ button. Based
on the component the user chooses, the tool displays required customization options.

Figure 2. Single UVM Component Tool Layout

 Interface Creation: The tool provides the user with multiple options to develop an interface file such as:
• Creating a default interface with an empty shell
• A user defined interface via the GUI as shown in Figure 3
• Loading a spreadsheet

 For example, if the user wants a simple interface with 5 to 10 signals, then the user can choose to create using a
user defined interface option. To do this, all the users needs to do is enter the necessary signal details in the required
entry widget, which includes signal name, type, packed/un-packed element, clocking block, modport details and click
“Done interface config”, to generate the necessary code. If the interface contains many signals, the tool provides the
option to load interface details using a spreadsheet method and then generate the interface code.

Figure 3. User Defined Interface Details Filled via GUI

 Agent Creation: When the user wants to create an agent, the tool further provides options for the user to enter the
number of driver-sequencers or monitors they want with required names as shown in Figure 4. The tool generates the
necessary code templates which are compile clean and ready to use. As soon as the code is generated, the tool goes to
the default/initial layout.

Figure 4. Component Specific Customization Layout

C. Creating Complete UVM VIP

The moment user clicks the “Single & Multi Env VIP” from the initial layout, the tool provides a couple of options
as shown in the Figure 5, namely 1. GUI Approach, 2. Load Spreadsheet Approach

Figure 5. Complete UVM VIP Development tool Layout

 In the GUI mode, the tool provides the user with entry widgets to enter details about a complete environment. The
environment can contain n-instances of sub-environments, n-instances of agents, environment level monitors,
scoreboards and interface files. The complete GUI based approach tool layout is shown in Figure 6.

Figure 6. GUI Approach tool layout with partial filled in data

As the user starts filling in the details about the environment to be created, tool intuitively brings up the required

widgets to provide necessary details. For example, when the user starts filling the details about the agent, the tool
provides input widgets to enter the details about driver, agent level monitor and the interface information as shown in
Figure 7.

Figure 7. Popped up tool window for acquiring agent details

Once the user enters all the required information about the environment to be built, the user will click the "Env

Setup" button found at the bottom of the tool window. By clicking that button, the tool generates a matrix table with
all the monitors, scoreboards and provide the option for user to make the necessary connection as shown in Figure 8.

Figure 8. Monitor-Scoreboard Connectivity Matrix table

Once the user has provided the required details about all the environments and the monitor-scoreboard connectivity

information, the user needs to click the “Done Env Cfg” button as shown in Figure 9 to instruct the tool that the user
has confirmed all the testbench setup and it is safe to move ahead.

Figure 9. Environment configuration confirmation layout

After confirming the environment configuration, the user then clicks the “Generate Code” button as shown in Figure

10. This will instruct the tool to build the testbench codes, necessary files, and directory structures.

Figure 10. Final tool layout before proceeding to generate code

By clicking the "Generate Code" button, the tool generates:

• Agent related files, which includes agent, driver, sequencer, monitor, and agent config files
• Environment file, environment configuration, monitors and scoreboards templates
• A basic test and testbench top to quickly run and check the setup
• Sequence item, sequence, environment, and test package file with all the required files included in the precise

order needed so that it compiles clean
• Necessary include files and environment source scripts
• An important file called “Environment Configuration Dump” xlsx file. This file contains all the details about

the components that are built inside the environment

In the complete UVM VIP tool window, when the user chooses the “Load Spreadsheet Approach”, the tool pops up

with the layout as shown in Figure 11.

Figure 11. Load spreadsheet tool layout

In this mode, the user can enter the details in a tool understandable spreadsheet format as shown in the Figure 12.

Figure 12. Spreadsheet example which the tool understands

By selecting the necessary file to be parsed and clicking the “Parse Spreadsheet” button, the tool reads through the

xlsx file and automatically fills with in the environment details in the GUI layout. The user can then browse through
the configuration in the tool before generating the final UVM template code.

D. Novel Stitch, Create & Stitch Feature

The art of developing a testbench doesn’t happen in a single day but is a continual long-term process. For example,
on day 1, the user might just need to build the environment skeleton. On day 2, the user might end up adding few other
components namely agents and environment level monitors. Later the user adds the required scoreboard and
connectivity. How does this tool take care of such cases? Well, the tool provides couple of novel features namely,
“Stitch”, “Create & Stitch” modes which helps in incremental testbench development process.

Stitch Mode: This mode comes in handy if the user has already created an environment with the tool which takes

care of generating different kinds of clock sources and now the user wants to build a block level bench which is going
to take care of register programming. The user needs to launch the tool, generate the required block level testbench
skeleton and then, using the “Stitch mode”, the user can stitch the other sub-environments into this block level
environment. The user needs to enter the required number of sub-env's wanted to be stitched and add the sub-env's
names appended with “__s” as shown in the Figure 13.

Figure 13. Novel Stitch method for adding existing environment

By doing this, the tool will understand that the user is trying to “Stitch” an already created environment into an
existing environment. The tool automatically takes care of instantiating and editing the necessary files to include the
individual elements. It does not re-generate the files but smartly updates the content.

Create & Stitch Mode: If, in the above block level environment, the user wants to add a new agent, the user can do

so by launching the tool and loading the block level environment using “Load Spreadsheet” Mode. Next, the user
can add the details about new agent i.e., number of agents followed by the name of agent appended with “__c”, as
shown in Figure 14 and then clicking the "Generate Code" button. The tool knows the user is adding new components
onto an existing block level environment, so the tool generates only the new components and then stitches them onto
the already existing environment in all the necessary places.

Figure 14. Novel Create and Stitch method for adding new agents into existing environment

 Thus, these novel techniques cleverly help the users in building the testbench over the course of project. The
granularity level at which the work can start from can be:

• Adding single or multiple port connectivity’s between monitor and scoreboard
• Adding new environment level monitor’s and scoreboard’s in already existing environment with updated

connectivity
• Adding driver/monitor inside already existing agents and adding new agents into existing environment
• Adding an environment using create & stitch or just stitch process into an already existing environment

III. CODE SNAPSHOTS

 Let’s look at some of the important code snippets that are being auto generated by the tool. All the codes shown
below are stripped down version of complete code which has proper comments and indentation. Figure 15 shows the
code snippet for agent component. All the required components such as driver, sequencer, and monitor are instanced
correctly, and they are completely controlled by agent level configuration.

Figure 15. Agent template code

 The code snippet in Figure 16 shows the code implementation for an environment component. As you can see, the
required dynamic agent components and scoreboards are instanced. They are created based on a top-level environment
configuration file, thus giving user the flexibility to control the components as needed from top level test. The tool
automatically takes care of the connectivity between the components, passing the leaf level configuration to the
respective components obtained from the environment configuration.

Figure 16. Environment template code

 The code snippet in Figure 17 shows the different options which were provided to the user while connecting the
monitor to the scoreboard, i.e., either using FIFO based approach on the left side or using a user defined write function
method. Based on the user choice, the tool automatically builds the required codes and makes the necessary
connectivity between the components. The tool uses a built-in tree algorithm to identify which environment the
respective monitor-scoreboard connectivity needs to be placed in a multi-env scenario.

Figure 17. Code difference between FIFO based and Write function-based connectivity in Scoreboard

 Figure 18 shows the code snippet for interface code. This interface is generated using load spread-sheet method,
where the user can define the details about each signal to be used. The user can also include the necessary signals for
the clocking blocks and add them in the modport based on the requirement. The tool provides the user option to
generate interface with/without clocking block and modport by using the right switches.

 One of the important, auto generated code feature is the package file. The user usually tends to commit a lot of
mistakes while including the files in the package leading to missing files or including the files in wrong order. Figure
19 shows the auto generated code snippet of the package file. The tool knows the entire list of files that is being created

and knows the exact order in which the files are supposed to be included starting from interface, configuration objects,
sequence items, sequences, leaf level components containing agents and its counterparts, environment and top-level
generic test for compilation and simulation to validate the developed codes.

 Figure 18. Interface code snippet Figure 19. Auto generated package code

IV. PERFORMANCE EVALUATION

Below Table 1 shows the comparison between ‘Novel GUI Based UVM testbench template builder’ and other open
source UVM code generators.

TABLE I
COMPARISON BETWEEN THIS TEMPLATE BUILDER AND OTHER OPENSOURCE TOOLS

Comparison Points Easier UVM Code
Generator [4]

Open Titan UVM
Generator [5]

Novel GUI Based UVM testbench
Template Builder [1]

License Open source Open source Open source

Support GUI No No Yes

Generation of UVM class code Yes Yes Yes

Generation of complete UVM environment No Yes Yes

Generation of multi-instance of agents, monitors,
environments, etc. for complex testbench

No No Yes

Smart monitor and scoreboard connectivity No No Yes

Incremental testbench development No No Yes

Environment Integration No No Yes

Open-source documentation formatting [3] No No Yes

V. SUMMARY

The UVM template generator provides the user to create any component template or the entire VIP dynamically in
matter of minutes. The generator helps in standardization of code development and re-usability of the code across the
projects and helps in complete integration of the verification collateral. With the template generator's unique ‘Create
& Stitch’ feature, the tool can add new components, add connection between components or append sub environment
VIPs to the already existing code, hence helping in incremental enhancement of the testbench. The tool helps in
massive (99.88%) time reduction in bringing up the initial UVM VIP template development cycle [0.0083Hrs/30Sec],
which is compile clean, properly commented, and ready to use as compared to the code developed by an engineer
[8Hrs/1Bussiness day]. Hence, this tool indeed improved verification productivity and showcased its performance in
complex streamlined products.

REFERENCES
[1] Tool documentation: https://github.com/hellovimo/uvm_testbench_gen/wiki/The-Novel-GUI-Based-UVM-Template-Generator
[2] GitHub repository for tool open-source code: https://github.com/hellovimo/uvm_testbench_gen
[3] Natural Docs: https://www.naturaldocs.org/
[4] Doulos ‘Easier UVM Code Generator’: https://www.doulos.com/knowhow/systemverilog/uvm/easier-uvm/easier-uvm-code-generator/
[5] Open Titan Utilities: https://docs.opentitan.org/util/uvmdvgen/README/

