SYNOPSYS®

Novel Approach to Verification and Validation for Multi-die Systems

Dr. Tim Kogel Sr. Director, Technical Product Management Oct 2024

- Multi-die market trends and challenges
- Multi-die architecture performance and power validation
- Functional verification of multi-die designs
- Multi-Die physical validation and optimization
- Summary

AI Drives New Design Paradigms

The need for hardware scaling leads to new architectures and design approaches

Transformer Size: 410x / 2yrs HW FLOPS: 3.0x / 2 yrs AI HW Memory: 2x /2 yrs

Moore's Law: 2x / 2 yrs

DRAM Bandwidth: 1.6x / 2 yrs

Interconnect Bandwidth: 1.4x / 2 yrs

Rapidly Growing System Complexity Μ M Time Optimal mix of Compute type per Workload GPU AI FPGA Accelerato 1000 Mili Wide range of optimizations Fabric + Cache Innovations to Accelerate Data & innovations **Careful Optimizations of Chiplet Interface** Type: MCM, SIP, Bridges, Silicon Interposer, RDL Standard: BOW, OHBI, AIB, UCIe, XSR System Tradeoff Data Flow Analysis Bandwidth Latency Cost Power Topology

SYNOPSYS[®]

Source: AI and Memory Wall: 2403.14123 (arxiv.org), Baya Systems @ EETimes Chiplet Summit © 2024 Synopsys, Inc.

3

DESIGN AND VERIFIC

CONFERENCE AND EXHIBITION

Use Cases for the Era of Pervasive Intelligence

From Silicon IP to System HW for AI Inference & Training running SW

DESIGN AND VERIFIC OCTOBER 15-16, 2024

Safety, Reliability, Security, Design for Test, Sign-off, Silicon Lifecycle Management

Multi-Die Design in the Era of Pervasive Intelligence

Expanding Use Cases Across Market Verticals

The Shift to Multi-Die Design

Accelerated scaling of system functionality at a cost-effective price

Reduced risk & time-to-market by re-using proven designs/die

Lower system power while increasing throughput

Rapid creation of new product variants for flexible portfolio management

Multi-Die Design Adoption is Growing

Multi-Die Designs by Application

Source: Synopsys

Source: IBS Semiconductor Industry Outlook May 2023

Chiplets Design

Cost Analysis Example: Disaggregated Silicon

- 3DIC lowers the cost by 48%, thanks to a) better yield due to smaller die size; b) simpler BEOL for L3 cache chiplet; and c) mature and cheaper node for IO.
- They offset added cost due to sort and assembly and interposer.

Heterogeneous Integration Enabled by the State-of-the-Art 3DIC and CMOS Technologies: Design, Cost, and Modeling

 $\underline{X.\text{-W. Lin}^1, V. Moroz^1, X. Xu^1, Y. Gao^1, D. Rennie^2, P. Asenov^3, S. Smidstrup^4, D. Sherlekar^1, Z. Qin^1, T. Fang^5, J. Lee^3, M. Choi^1, and S. Jones^6$

Multi-Die is Enabling Truly Transformative Products

Commercial examples

Disaggregate

Split

3D V-Cache: Hybrid Bonded 3x Energy Efficiency, 15x Interconnect Density (v. µbumps)

Apple

Nvidia

Superchip: Gen Al Computing 2x Dies, 200B+ Transistors, 3.2TB/s Fabric

SYNOPSYS[®]

10 © 2024 Synopsys, Inc.

Scale-Up

DESIGN AND VERIFIC

CONFERENCE AND EXH

Multi-Die Interface Standardization

Technical Merits, Maturity & Strength of Ecosystem are Key for Success

Alliance	OIF	OPEN Compute Project®		• CHIPS • Alliance	Universal Chiplet Interconnect Express
Standard	XSR	BOW	OHBI	AIB	UCle
Data Rate	112G / 224G	8G / 16G	8G / 16G	6G	16G / 32G
Protocol	Not Defined	Not Defined	Not Defined	Not Defined	Streaming, PCIe, CXL
Package Focus	2D	2D (2.5D also supported)	2.5D (2D also supported)	2.5D	2D, 2.5D, 3D
Target Applications	Optical Networking (CPO/NPO)	Cost sensitive aggregation	High density scale for data center	Mil-aero ecosystem	Scale & Split w/ streaming Aggregation w/ PCIe/CXL

Why is UCIe a Preferred D2D Interface?

Technical Merits, Comprehensive Spec & Broad Eco-System

- Technical Merits (Most compelling PPAs)
 - Energy efficiency <0.3pJ/Bit
 - Edge efficiency >5Tbps/mm
 - Latency ~2ns from FDI to FDI
- Comprehensive & Futureproof
 - All use cases
 - All package types
 - Chip to Chip use case with retimer
 - Complete protocol stack
 - Future proof with support up to 32Gbps data rate per pin
- Broad Ecosystem
 - Wide range of promoters & contributors spanning all industry segments

The First UCIe Test Chips for the Chiplet Era

TSMC, Synopsys, and Intel Foundry Pike Creek—the first test chips for UCIe and the beginning of the chiplet era.

Pat Gelsinger, CEO Keynote at Intel Innovation 2023

Enabling the Multi-Die Ecosystem

Specialization with domain-specific accelerator chiplets

"Data Driven Design for Adaptive Multi-Die Designs" Vikrant Kapila, Principal Engineer & Director, Altera SNUG Silicon Valley, 2024, <u>slides</u>

"Standardization for Automotive Computing HW" François Piednoël, Distinguished Architect, MBZ Automotive Compute Conference, US, 2024

"Standardization could open door to 3rd-party chiplets" AMD's CTO Mark Papermaster and SVP Sam Naffziger https://www.theregister.com/2024/03/27/amd_chiplets_future

IMEC's "Automotive Chiplet Program", link

- Baseline compute, memory, and IO dies with standard multi-die interface
- Custom companion chiplets with access to memory infrastructure
- Architecture challenges:
 - Workload partitioning & mapping
 - Interconnect/memory fabric dimensioning
 - End-to-end performance, power, and thermal analysis
 - Physical design planning

Multi-Die Design: A Wide Range of Needs

Multi-Die Validation and Verification Challenges

- CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION
- System verification must validate assumptions made during architecture design
 - Must consider die-to-die communication: delay, jitter, coherency, power, guaranteed delivery and errors
 - Monolithic SoCs only consider delay
- Design size and complexity exacerbate Verification
 - Need adequate levels of capacity and performance
 - Hybrid models and traffic generators to focus on a few dies at a time
 - Very large memories bottlenecks
 - Scalability of simulation/emulation models
 - Include analog components
 - Scalable system integration methodology (system aggregation)
- Knowing when Verification is complete
 - Exhaustive verification of individual dies Complete functional coverage (UVM)
 - Die-level bugs cannot be fixed at the system level

- Multi-die market trends and challenges
- Multi-die architecture performance and power validation
- Functional verification of multi-die designs
- Multi-Die physical architecture validation, optimization, and sign-off
- Summary

SYNOPSYS[®]

Choices Influencing PPA/mm3

SYNOPSYS[®]

Bandwidth, performance, power, latency, cost, and schedules

UCIe is De Facto Standard for Multi-Die Designs

Lightweight die-to-die interface for all use cases

Characteristics / KPIs	Standard Package	Advanced Package	
Data Rate (GT/s)	4, 8, 12, 16, 24, 32		
Width (each cluster)	16	64	
Bump Pitch (um)	100 - 130	25 - 55	
Channel Reach (mm)	<= 25	<=2	
B/W Shoreline (GB/s/mm)	28 - 224	165 - 1317	
B/W Density (GB/s/mm ²)	22-125	188-1350	
Power Efficiency target (pJ/b)	0.5	0.25	

Universal Chiplet Interconnect Express (UCIe)™ Whitepaper: Building an Open Chiplet Ecosystem

- Supports variety of different use cases and on-chip fabrics
 - Streaming for latency optimized and for proprietary implementations
 - AXI, CXS.B, and CHI-C2C for seamless multi-die disaggregation of on-chip interconnects
 - Coherent multi-die aggregation with CXL in compute & memory expansion use cases
 - Non-coherent multi-die aggregation with PCIe for latency insensitive use cases

FDI = FLIT-aware Die-to-die Interface RDI = Raw-data Die-to-die Interface

New Dimensions in Architecture Exploration

- SoC-level macro-architecture decisions
 - HW/SW partitioning
 - IP selection, configuration, and connectivity
 - Interconnect/memory dimensioning
 - System-level power analysis
- Additional multi-die macro-architecture decisions
 - Aggregation: assemble multi-die system from chiplets
 - Disaggregation: partitioning into multiple chiplets
 - Dimensioning of die-to-die interfaces
 - Selection of technologies for each chiplet
 - Selection of packaging technology

DESIGN AND VER

- <u>Goal:</u> design the right product, de-risk architecture, translate product requirements into implementation specification, track requirements
- <u>Use cases:</u> data-driven performance and power analysis, HW/SW partitioning, interconnect/memory dimensioning, iterative architecture optimization

SYNOPSYS[®]

Generic Die-to-Die (D2D) Controller

Overview

Configurable generic model to mimic architecture and timing of D2D interfaces

- Application protocols: AXI, CHI
- Die-to-die protocols
 - UCle protocol and configuration
 - Additional D2D protocols can be customized
- One pair of d2d host and device ctrlr represents
 - D2D controller and core
 - PHY(s) one per module
 - Protocol bridge (AXI)
- Highly configurable for performance exploration
- Trace-based and statistical analysis
- Starting point example platform for AXI over UCIe

SYNOPSYS

Case Study

Multi-die performance/power analysis of AI workload

- Goals/requirements:
 - Framerate 210Hz / 4.75ms inference latency per frame
 - minimize power and energy
- Optimize hardware configuration:
 - UCIe chip-to-chip interface
 - Local memory of AI chiplet (NPX6-64K)
 - Interconnect, buffers, credits, ...

Demo Video Multi-Die Power/Performance Analysis Case-Study

- 1. Show system disaggregation and D2D adapter configuration options
- 2. Run simulations to find D2D link configuration meeting functional performance requirements
- 3. Analyze the resulting data using sensitivity charts identify trends and best suited configurations

Demo Video Placeholder

Active librarv set: /localdev/keding/PA/D2D/EarlvPhvsicalAndPerformanceArchitecture/PoC Example/PA/AiDie/libs/Project.pctlib

SYNOPSYS°

Case Study Results

Multi-die performance/power analysis of AI workload

- Requirements met / Goals achieved:
 - Framerate 212Hz = 4.72ms inference latency per frame
 - D2D power < 50mW</p>
- Optimize hardware configuration:
 - UCIe interface: 2 modules, 16GT/s, 512bit core @ 1GHz
 - AI (NPX6) chiplet memory: 16MB CSM

- Multi-die market trends and challenges
- Multi-die architecture performance and power validation
- Functional verification of multi-die designs
- Multi-Die physical architecture validation, optimization, and sign-off
- Summary

How to Reduce SoCs Tape-out Risks?

IP/Vendor Selection

- Broadest IP VIP portfolio
- Pre-tested, silicon-proven IP Subsystems for your SoC
- IP & SoC experts configure and customize to your requirements

IP Qualification

- Active engagement with standards bodies and eco-system partners
- Ready-to-go compliance test suites for IP qualification
- Frees your team to work on your product differentiation

IP Integration

- Reference flows and services for IP integration and convergence between project teams
- First-time-right SoC integration speeds TTM

UCIe VIP Use-cases and Topologies

- Verification topologies for various Design types
- Use-cases:
 - D2D / PHY / Protocol Layer DUT
 - D2D-PHY Interoperability
 - Protocol-layer-D2D-Controller Interoperability
 - UCIe Subsystem
 - UCIe Full Stack

UCIe 1.1 Focus on Automotive Requirements

Safety, Security, Reliability and Ecosystem Adoptions

- Preventive monitoring
- In-field repairability
- Multi-protocol support for ecosystem adoption
- Cost Optimization
- Compliance Testing

UCle sees automotive chiplet group with latest specification Business news | August 9,2023

The UCle Consortium has launched an automotive chiplet group alongside the public release of Universal Chiplet Interconnect Express specification version 1.1 specification.

DESIGN AND VERIF

OCTOBER 15-16, 2024

Preventive Monitoring

Design and Verification considerations	VIP features
Continuous monitoring & reporting	 API Control eye margins during LTSM states Read/write UHM registers
Failure rate of link	Parity computation and correctionCallback to inject parity error
PHYRETRAIN	 Local and remote Adapter and PHY initiated retrain API Control retrain pattern count Corrupt retrain results Forcibly move to retrain state
Interrupt	 API to enable/disable interrupts

Protocol checks to catch unexpected DUT behaviours

In-field Repairability

- Repairability Considerations
 - Redundancy mapping: Clock and valid lane mapping, single lane and two-lane data mapping
 - REPAIR: Usage of Redundant pins to repair clock, valid and data lanes
 - TRAINERROR: Repair of lanes is not feasible

Ecosystem Adoption

- Streaming Protocol usage considerations
 - *Flit formats*: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format	Elit Format Nama	PCle	CXL 68B	CXL 256B	CXL 256B Streaming	
Number		Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 256B End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bytes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

Ecosystem Adoption

- Streaming Protocol usage considerations
 - *Flit formats*: Usage of existing PCIe/CXL flit formats for various streaming protocol chiplets e.g. AXI, CHI, vendor defined etc.
 - Features: Use D2D features like CRC, Retry, parity, etc.

Flit Format	Elit Format Nama	PCle	CXL 68B	CXL 256B	CXL 256B Streaming	
Number		Flit Mode	Flit Mode	Flit Mode	UCle 1.0	UCle 1.1
1	Raw	Optional	Optional	Optional	Mandatory	Mandatory
2	68B	N/A	Mandatory	N/A	N/A	Supported
3	Standard 256B End Header	Mandatory	N/A	N/A	N/A	Supported
4	Standard 256B Start Header	Optional	N/A	Mandatory	N/A	Supported
5	Latency Optimized 256B without optional Bytes	N/A	N/A	Optional	N/A	Supported
6	Latency Optimized 256B with optional Bytes	Strongly Recommended	N/A	Strongly Recommended	N/A	Supported

Ecosystem Adoption

Design and Verification considerations	VIP features
Link initialization	 Parameter exchange advertisement Clock gate handshake for independent FDI interface API to move to specific state
Data Flow	 Independent interfaces to transport data using multiple instances API Configure flit format Configure protocol for both stacks Data integrity check using CRC, parity etc.
Throughput	 Per flit arbitration with 50% bandwidth
Error injection	 Callback To inject error in flit To corrupt sideband messages

Cost Optimization

Design and Verification considerations	VIP features		
Parameter Exchange	 UCle-A x32 parameter exchange API Enable x32 support Bypass link states Move to specific link state 		
MB Repair	 API Control repair pattern count Corrupt repair result 		
MB Reversal	 API Control reversal pattern count Corrupt reversal result 		
Data Flow	 API Control inter packet delay Inject back pressure 		

Compliance testing

Testing Phases

Phases	Phase1	Phase2	Phase 3
Goal	Bring Up	Data Flow	Error injection
Design Verification Consideration	Link upRDI bring upFDI bring up	Flit formatsCRC, parity, retry etc.Data integrity	 Error injection at each layer
VIP feature	 API Trigger link initialization Control training pattern counts 	 API Drive sideband and main-band traffic. Control parity and retry features Analysis port at each interface for score-boarding All flit formats 	 Callback To inject errors To block sideband response message API Control timeout of state Delay sideband response message

Synopsys

SoC-level Verification

Transition from IP-level to SoC-level Verification

- Challenge
 - Re-use IP-level testbenches for SoC verification
- Approach
 - "SoC-ready" modular testbench structure
 - Provides testbench components for SoC integration
- Benefits
 - Accelerates the SoC testbench development
 - Enables testing of Interface IPs in Subsystem/SoC environment
 - Lowers integration risk

UCIe 2.0 Focus on Manageability and 3D Packaging

Safety, Security, Reliability and Ecosystem Adoptions

- Management Transport Protocol (MTP)
- UCIe Debug and Test Architecture (UDA)
- UCIe-S Sideband only (SO) port
- x8, x4 link width for standard package
- UCle 3D packaging

UCle Consortium Releases 2.0 **Specification Supporting Manageability** System Architecture and 3D Packaging

Business Wire

PUCIe Universal Chiplet Interconnect Express August 6, 2024 · 3 min read

- Multi-die market trends and challenges
- Multi-die architecture performance and power validation
- Functional verification of multi-die designs
- Multi-Die physical architecture validation, optimization, and sign-off
- Summary

- Goal: Consider physical effects during architecture specification
- <u>Use cases:</u> Multi-die geometry and floor-plan, thermal analysis, power-delivery network architecture

3DIC Compiler Platform

Unified exploration-to-signoff platform for multi-die designs

SYNOPSYS[®]

AI-driven Multi-Die Design Space Optimization

Autonomous exploration and optimization of 2.5D/3DHI design space

Integrated AI optimization of multi-die designs for signal, thermal and power integrity in single design platform

Fast native analysis for system performance and compute efficiency, while maximizing quality-of-results (QoR)

Scalability to optimize across massive 3D design space of hundreds of billions of transistors and trillions of permutations

SYNOPSYS°

CoWoS-S Interposer UCIe PHY Routing Validation

Dense routing with 78 signals per signal layer in 388um cross section

Synopsys[®]

Signal Integrity Validation of CoWoS-S Test Chip

UCIe routing optimization using Synopsys 3DIC Compiler

Signal Integrity (SI) Optimization with Synopsys 3DIC Compiler

Parameter	Specification	Manual	Optimized
Insertion Loss	> -3 dB	-2.48 dB	-1.91 dB
PSFEXT	< -23 dB	-21.7 dB	-23.91 dB

UCIe-A on TSMC N5 with CoWoS-S Test Chip

8 UCIe-A (x64) modules are routed over CoWoS-S interposer

UCIe-A PHY on TSMC CoWoS-S Silicon Results

Results validate UCIe-A over CoWoS design methodology

UCIe PHY is Silicon Proven on TSMC N5 with Various Package Technologies

SYNOPSYS°

Case Study: UCIe Multi-Die SLM & Test Architecture

Test, Repair & Monitoring of Interconnect, Memory, and Logic

- 3DSO.ai used to optimize layout and performance of D2D Routing
 - AI-driven optimization: Insertion Loss (IL), Near-End Cross-Talk (NEXT), Far-End Cross-Talk (FEXT)
 - Goal is for multiple solutions with improved Signal Integrety

ic D2D Routing

SYNOPSYS°

Results: Typical and Slow Corner

Summary: 64 nets

Parameters	Specification [ps]	Typical corner [ps]	Slow corner [ps]		ISI at Far End	Xtalk at Far End
				Typical		55.1ps
ISI eye opening	50 (0.8UI)	59.1 (0.946UI)	58.0 (0.928UI)	corner	59.1ps	
ISI jitter	8.75	62.5(1*UI) - 59.1 = 3.4	62.5(1*UI) - 58.0 = 4.5	(21 Heis) Slow	58 1ns	54 1ps
Xtalk eye opening	50 (0.8UI)	52.3 (0.837UI)	51.7 (0.821UI)	corner (21 nets)		
Xtalk jitter	6.88	59.1 - 52.3 = 6.8	58.0 - 51.7 = 6.3	corner	59.1ps	52.3ps
Total jitter[ps]	15.62	3.4 + 6.8 = 10.2	4.5 + 6.3 = 10.8	(64 nets)		
Total jitter[UI]	0.25UI	0.163UI (10.4/62.5)	0.173UI (10.8/62.5)	Slow	58 0ps	51.7ps
1/O Buffor Information Specification (IBIS) definition				(64 nets)		

I/O Buffer Information Specification (IBIS) definition

Temp range	25.0	-40.0	125.0
Voltage range	750.00mV	675.00mV	825.00mV

Synopsys' Multi-Die Design Methodology

Efficiently create, implement, optimize, and close in one place

The Multi-Die Design Convergence Path

Uncovering bottlenecks and PPA + cost opportunities

Synopsys Multi-Die Solution

A comprehensive and scalable solution for fast heterogeneous integration

SYNOPSYS°

SYNOPSYS[®]

synopsys.com/multidie